Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude.
View Article and Find Full Text PDFClimate warming is a ubiquitous stressor in freshwater ecosystems, yet its interactive effects with other stressors are poorly understood. We address this knowledge gap by testing the ability of three contrasting null models to predict the joint impacts of warming and a range of other aquatic stressors using a new database of 296 experimental combinations. Despite concerns that stressors will interact to cause synergisms, we found that net impacts were usually best explained by the effect of the stronger stressor alone (the dominance null model), especially if this stressor was a local disturbance associated with human land use.
View Article and Find Full Text PDFHuman-assisted introductions of exotic species are a leading cause of anthropogenic change in biodiversity; however, context dependencies and interactions with co-occurring stressors impede our ability to predict their ecological impacts. The legacy of historical sportfish stocking in mountainous regions of western North America creates a unique, natural quasiexperiment to investigate factors moderating invasion impacts on native communities across broad geographic and environmental gradients. Here we synthesize fish stocking records and zooplankton relative abundance for 685 mountain lakes and ponds in the Cascade and Canadian Rocky Mountain Ranges, to reveal the effects of predatory sportfish introduction on multiple taxonomic, functional and phylogenetic dimensions of prey biodiversity.
View Article and Find Full Text PDFMultiple factors operating across different spatial and temporal scales affect β-diversity, the variation in community composition among sites. Disentangling the relative influence of co-occurring ecological drivers over broad biogeographic gradients and time is critical to developing mechanistic understanding of community responses to natural environmental heterogeneity as well as predicting the effects of anthropogenic change. We partitioned taxonomic β-diversity in phytoplankton communities across 75 north-temperate lakes and reservoirs in Alberta, Canada, using data-driven, spatially constrained null models to differentiate between spatially structured, spatially independent, and spuriously correlated associations with a suite of biologically relevant environmental variables.
View Article and Find Full Text PDFSpecies diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g.
View Article and Find Full Text PDFThe accelerating rate of global change has focused attention on the cumulative impacts of novel and extreme environmental changes (i.e. stressors), especially in marine ecosystems.
View Article and Find Full Text PDF