The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements.
View Article and Find Full Text PDFSingle-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface.
View Article and Find Full Text PDFRapamycin is an immunosuppressant macrolide that exhibits anti-proliferative properties through inhibiting the mTOR kinase. In fact, the drug first associates with the FKBP12 enzyme before interacting with the FRB domain of its target. Despite the availability of structural and thermodynamic information on the interaction of FKBP12 with rapamycin, the energetic and mechanistic understanding of this process is still incomplete.
View Article and Find Full Text PDFSynchrotron radiation can induce sample damage, whether intended or not. In the case of sensitive samples, such as biological ones, modifications can be significant. To understand and predict the effects due to exposure, it is necessary to know the ionizing radiation dose deposited in the sample.
View Article and Find Full Text PDFWe present and fully characterize a flow cell dedicated to imaging in liquid at the nanoscale. Its use as a routine sample environment for soft X-ray spectromicroscopy is demonstrated, in particular through the spectral analysis of inorganic particles in water. The care taken in delineating the fluidic pathways and the precision associated with pressure actuation ensure the efficiency of fluid renewal under the beam, which in turn guarantees a successful utilization of this microfluidic tool for in situ kinetic studies.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2019
Over the past few decades, single-molecule manipulation has been widely applied to the real-time analysis of biomolecular interactions. It has enabled researchers to decipher structure-function relationships for polymers, enzymes, and larger-scale molecular machines, in particular by harnessing force to probe both chemical and mechanical stabilities. Nucleic acids have played a central role in this effort because, in addition to their biological significance, they exhibit unique polymeric properties which have recast them as key components participating in numerous experimental designs.
View Article and Find Full Text PDFThe residence time of a drug on its target has been suggested as a more pertinent metric of therapeutic efficacy than the traditionally used affinity constant. Here, we introduce junctured-DNA tweezers as a generic platform that enables real-time observation, at the single-molecule level, of biomolecular interactions. This tool corresponds to a double-strand DNA scaffold that can be nanomanipulated and on which proteins of interest can be engrafted thanks to widely used genetic tagging strategies.
View Article and Find Full Text PDFThe nematode has been central to the understanding of metazoan biology. However, is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus , many of which await formal species description.
View Article and Find Full Text PDFLiving cells are chemical mixtures of exceptional interest and significance, whose investigation requires the development of powerful analytical tools fulfilling the demanding constraints resulting from their singular features. In particular, multiplexed observation of a large number of molecular targets with high spatiotemporal resolution appears highly desirable. One attractive road to address this analytical challenge relies on engaging the targets in reactions and exploiting the rich kinetic signature of the resulting reactive module, which originates from its topology and its rate constants.
View Article and Find Full Text PDFThe use of peptidic ligands is validated as a generic chemical platform allowing one to finely control the organization in solid phase of semiconductor nanorods originally dispersed in an aqueous media. An original method to generate, on a macroscopic scale and with the desired geometry, three-dimensional supracrystals composed of quantum rods is introduced. In a first step, nanorods are transferred in an aqueous phase thanks to the substitution of the original capping layer by peptidic ligands.
View Article and Find Full Text PDFThe ability to follow and modify cell behaviour with accurate spatiotemporal resolution is a prerequisite to study morphogenesis in developing organisms. Electroporation, the delivery of exogenous molecules into targeted cell populations through electric permeation of the plasma membrane, has been used with this aim in different model systems. However, current localised electroporation strategies suffer from insufficient reproducibility and mediocre survival when applied to small and delicate organisms such as early post-implantation mouse embryos.
View Article and Find Full Text PDFLiving systems offer attractive strategies to generate nanoscale structures because of their innate functional properties such as the dynamic assembly of ordered nanometer fibers, the generation of mechanical forces, or the directional transport mediated by molecular motors. The design of hybrid systems, capable of interfacing artificial building blocks with biomolecules, may be a key step toward the rational design of nanoscale devices and materials. Here, we have designed a bottom-up approach to organize cytoskeletal elements in space using the self-assembly properties of magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation.
View Article and Find Full Text PDFLatex micrometric beads are manipulated by optical tweezers in the vicinity of an ultramicroelectrode (UME). They are optically trapped in solution and approached the electrode surface. After the electrochemical measurement, they are optically removed from the surface.
View Article and Find Full Text PDFDecisions on the fate of cells and their functions are dictated by the spatiotemporal dynamics of molecular signalling networks. However, techniques to examine the dynamics of these intracellular processes remain limited. Here, we show that magnetic nanoparticles conjugated with key regulatory proteins can artificially control, in time and space, the Ran/RCC1 signalling pathway that regulates the cell cytoskeleton.
View Article and Find Full Text PDFBy exploring the phenomenon of water diffusion induced self-assembly of silica particle in microfluidic channels, we show that both the geometric confinement experienced by the droplet and the local Peclet number are responsible for the final particle shape. This study will facilitate the understanding and ultimately control of self assembly at fluid interfaces.
View Article and Find Full Text PDFWe describe a method of controlled evaporation on a textured substrate for self-assembling and shaping gold-nanorod-based materials. Tridimensional wall features are formed over areas as large as several square millimeters. Furthermore, analyses by small-angle X-ray scattering and scanning electron microscopy techniques demonstrate that colloids are locally ordered as a smectic B phase.
View Article and Find Full Text PDFAn integrated approach relying on a microsystem is introduced to easily extract, from a single experiment and with a global robust bi-exponential fit, an extensive set of thermodynamic, kinetic, and diffusion parameters governing associations in solution.
View Article and Find Full Text PDFWe present an experimental study of the microfluidic electrophoresis of long DNA in self-assembling matrixes of magnetic bead columns. Results are presented for the rapid separation of lambda-phage, 2lambda-DNA, and bacteriophage T4 DNA, where separation resolutions greater than 2 between lambda and T4 are achieved in times as short as 150 s. The use of a computer-piloted flow control system and injection results in high reproducibility between separations.
View Article and Find Full Text PDFCantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties.
View Article and Find Full Text PDF