Publications by authors named "Charlie Farrell"

In this paper, we present the development of a novel processing technology to tackle hard-to-recycle plastic packaging waste contaminated with food residues. The proof-of-concept (POC) technology can effectively separate food residual amounts from plastic waste materials to a level acceptable for further re-use or recycling of the plastic packaging. To assess this technology, we have conducted spectroscopic, thermal, and calorimetric characterizations of the obtained fractions, such as cleaned mixed plastics (CMP), food waste with mixed plastics (FWMP), and a mixture of microplastics (MP).

View Article and Find Full Text PDF

Herein, value-added materials such as activated carbon and carbon nanotubes were synthesized from low-value Miscanthus × giganteus lignocellulosic biomass. A significant drawback of using Miscanthus in an energy application is the melting during the combustion due to its high alkali silicate content. An application of an alternative approach was proposed herein for synthesis of activated carbon from Miscanthus × giganteus, where the produced activated carbon possessed a high surface area and pore volume of 0.

View Article and Find Full Text PDF

Herein, activated carbon (AC) and carbon nanotubes (CNTs) were synthesised from potato peel waste (PPW). Different ACs were synthesised via two activation steps: firstly, with phosphoric acid (designated PP) and then using potassium hydroxide (designated PK). The AC produced after the two activation steps showed a surface area as high as 833 m g with a pore volume of 0.

View Article and Find Full Text PDF

Global exponential increase in levels of Photovoltaic (PV) module waste is an increasing concern. The purpose of this study is to investigate if there is energy value in the polymers contained within first-generation crystalline silicon (c-Si) PV modules to help contribute positively to recycling rates and the circular economy. One such thermochemical conversion method that appeals to this application is pyrolysis.

View Article and Find Full Text PDF