Background: Kabuki syndrome (KS) is a rare developmental disorder characterised by multiple congenital anomalies and intellectual disability. (ubiquitously transcribed tetratricopeptide repeat, X chromosome), which encodes a histone demethylase, is one of the two major pathogenic risk genes for KS. Although intellectual disability is a key phenotype of KS, the role of in cognitive function remains unclear.
View Article and Find Full Text PDFThe successful progression of meiosis prophase I requires integrating information from the structural and molecular levels. In this study, we show that ZFP541 and KCTD19 work in the same genetic pathway to regulate the progression of male meiosis and thus fertility. The Zfp541 and/or Kctd19 knockout male mice show various structural and recombination defects including detached chromosome ends, aberrant localization of chromosome axis components and recombination proteins, and globally altered histone modifications.
View Article and Find Full Text PDFMeiotic prophase I (MPI) is the most important event in mammalian meiosis. The status of the chromosome-binding proteins (CBPs) and the corresponding complexes and their functions in MPI have not yet been well scrutinized. Quantitative proteomics focused on MPI-related CBPs was accomplished, in which mouse primary spermatocytes in four different subphases of MPI were collected, and chromosome-enriched proteins were extracted and quantitatively identified.
View Article and Find Full Text PDFThe DNA damage response (DDR) pathway generally protects against genome instability, and defects in DDR have been exploited therapeutically in cancer treatment. We have reported that histone demethylase PHF8 demethylates TOPBP1 K118 mono-methylation (K118me1) to drive the activation of ATR kinase, one of the master regulators of replication stress. However, whether dysregulation of this physiological signalling is involved in tumorigenesis remains unknown.
View Article and Find Full Text PDFIntestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression.
View Article and Find Full Text PDFBody axial patterning develops a rostral-to-caudal sequence and relies on the temporal colinear activation of genes. However, the underlying mechanism of gene temporal colinear activation remains largely elusive. Here, with small-molecule inhibitors and conditional gene knockout mice, we identified Jmjd3, a subunit of TrxG, as an essential regulator of temporal colinear activation of genes with its H3K27me3 demethylase activity.
View Article and Find Full Text PDFBizarre parosteal osteochondromatous proliferation (BPOP), or Nora's lesion, is a rare benign osteochondromatous lesion. At present, the molecular etiology of BPOP remains unclear. JMJD3(KDM6B) is an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression.
View Article and Find Full Text PDFThe checkpoint kinase ATR [ATM (ataxia-telangiectasia mutated) and rad3-related] is a master regulator of DNA damage response. Yet, how ATR activity is regulated remains to be investigated. We report here that histone demethylase PHF8 (plant homeodomain finger protein 8) plays a key role in ATR activation and replication stress response.
View Article and Find Full Text PDFThe molecular mechanism associated with mammalian meiosis has yet to be fully explored, and one of the main reasons for this lack of exploration is that some meiosis-essential genes are still unknown. The profiling of gene expression during spermatogenesis has been performed in previous studies, yet few studies have aimed to find new functional genes. Since there is a huge gap between the number of genes that are able to be quantified and the number of genes that can be characterized by phenotype screening in one assay, an efficient method to rank quantified genes according to phenotypic relevance is of great importance.
View Article and Find Full Text PDFMedullary thymic epithelial cells (mTECs) play a central role in the establishment of T cell central immunological tolerance by promiscuously expressing tissue-restricted antigens (TRAs) and presenting them to developing T cells, leading to deletion of T cells responding to self-antigens. However, molecular mechanisms especially epigenetic regulation of mTEC homeostasis and TRA expression remain elusive. Here we show that the H3K27 demethylase Kdm6b is essential to maintain the postnatal thymic medulla by promoting mTEC survival and regulating the expression of TRA genes.
View Article and Find Full Text PDFThe mammalian epididymis not only plays a fundamental role in the maturation of spermatozoa, but also provides protection against various stressors. The foremost among these is the threat posed by oxidative stress, which arises from an imbalance in reactive oxygen species and can elicit damage to cellular lipids, proteins, and nucleic acids. In mice, the risk of oxidative damage to spermatozoa is mitigated through the expression and secretion of glutathione peroxidase 5 (GPX5) as a major luminal scavenger in the proximal caput epididymidal segment.
View Article and Find Full Text PDFHistone methyl groups can be removed by demethylases. Although LSD1 and JmjC domain-containing proteins have been identified as histone demethylases, enzymes for many histone methylation states or sites are still unknown. Here, we perform a screening of a cDNA library containing 2,500 nuclear proteins and identify hHR23A as a histone H4K20 demethylase.
View Article and Find Full Text PDFTo explain the excess cancer rate in males, several candidates for "escape from X-inactivation tumor-suppressor" (EXITS) were recently identified. In this report we provide direct experimental evidence supporting UTX's role as an EXITS gene. Using a mouse lymphoma model, we show clear dosage effect of UTX copy number during tumorigenesis, which strongly supports the EXITS theory.
View Article and Find Full Text PDFRecurrent somatic loss-of-function mutations in histone demethylases are frequently detected in cancer. However, whether loss of a histone demethylase can cause cancer has not been determined. Here, we report that knockout of the histone demethylase Utx in mice causes a chronic myelomonocytic leukemia (CMML)-like disease with splenomegaly, monocytosis, and extramedullary hematopoiesis.
View Article and Find Full Text PDFEpigenomic abnormalities caused by genetic mutation in epigenetic regulators can result in neurodevelopmental disorders, deficiency in neural plasticity and mental retardation. As a histone demethylase, plant homeodomain finger protein 8 (Phf8) is a candidate gene for syndromal and non-specific forms of X-chromosome-linked intellectual disability (XLID). Here we report that Phf8 knockout mice displayed impaired learning and memory, and impaired hippocampal long-term potentiation (LTP) without gross morphological defects.
View Article and Find Full Text PDFAs an important nuclear hormone receptor, estrogen receptor α (ERα), which is encoded by the Esr1 gene, regulates the expression of hundreds of genes in a stimulus-specific, temporal, and tissue-specific fashion, mainly by binding to specific DNA sequences called estrogen response elements (EREs). As an important estrogen target tissue in males, the function of the efferent ductules relies on the presence of the ERα protein, but the underlying regulatory mechanisms are poorly illustrated. In this study, genome-wide ERα-binding sites in mouse efferent ductules were mapped by chromatin immunoprecipitation sequencing.
View Article and Find Full Text PDFHistone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs).
View Article and Find Full Text PDFCurrently, the reliable prognostic biomarkers for WHO grade II diffuse astrocytomas (DA) are still limited. We investigated the relations between the level of 5-Hydroxymethylcytosine (5hmC), an oxidated production of 5-methylcytosine (5mC) by the ten eleven translocated (TET) enzymes, and clinicopathological features of glioma patients. With an identified anti-5hmC antibody, we performed immunohistochemistry in 287 glioma cases.
View Article and Find Full Text PDFMammalian spermatogenesis is a classic adult stems cell-dependent process, supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs). However, the identification of SSCs and elucidation of their behaviors in undisturbed testis has long been a big challenge. Here, we generated a knock-in mouse model, Id4-2A-CreERT2-2A-tdTomato, which allowed us to mark Id4-expressing (Id4(+)) cells at different time points in situ and track their behaviors across distinct developmental stages during steady-state and regenerating spermatogenesis.
View Article and Find Full Text PDFJMJD3 (KDM6B) is an H3K27me3 demethylases and emerges as an important player in developmental processes. Although some evidence indicated the involvement of JMJD3 in osteoblast differentiation in vitro, its role as a whole in osteoblast differentiation and bone formation in vivo remains unknown. Here we showed that homozygous deletion of Jmjd3 resulted in severe delay of osteoblast differentiation and bone ossification in mice.
View Article and Find Full Text PDFIntroduction: Histone H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 36 trimethylation (H3K36me3) are important epigenetic modifications correlated with transcription repression and activation, respectively. These two opposing modifications rarely co-exist in the same H3 polypeptide. However, a small but significant amount of H3 tails are modified with 5 methyl groups on K27 and K36 in mouse embryonic stem cells (mESCs) and it is unclear how the trimethylation is distributed on K27 or K36.
View Article and Find Full Text PDFInterleukin (IL) 17-producing T helper (Th17) cells play critical roles in the clearance of extracellular bacteria and fungi as well as the pathogenesis of various autoimmune diseases, such as multiple sclerosis, psoriasis, and ulcerative colitis. Although a global transcriptional regulatory network of Th17 cell differentiation has been mapped recently, the participation of epigenetic modifications in the differentiation process has yet to be elucidated. We demonstrated here that histone H3 lysine-27 (H3K27) demethylation, predominantly mediated by the H3K27 demethylase Jmjd3, crucially regulated Th17 cell differentiation.
View Article and Find Full Text PDFProtein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate protein arginine residues. PRMTs' substrates include histones and a variety of non-histone proteins. Previous studies have shown that yeast Hmt1 is a type I PRMT and methylates histone H4 arginine 3 and several mRNA-binding proteins.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.