Publications by authors named "Charli Dominguez"

Mesenchymalization is a cellular and molecular program in which epithelial cells progressively lose their well-differentiated phenotype and adopt mesenchymal characteristics. Tumor mesenchymalization occurs during the progression of cancer to metastatic disease, and is also associated with resistance to multiple therapeutics, including killing by cytotoxic immune cells. Furthermore, tumor cells can evade immune destruction by upregulating the checkpoint molecule PD-L1, and emerging research has found higher PD-L1 expression in mesenchymalized tumors.

View Article and Find Full Text PDF

The complex signaling networks of the tumor microenvironment that facilitate tumor growth and progression toward metastatic disease are becoming a focus of potential therapeutic options. The chemokine IL-8 is overexpressed in multiple cancer types, including triple-negative breast cancer (TNBC), where it promotes the acquisition of mesenchymal features, stemness, resistance to therapies, and the recruitment of immune-suppressive cells to the tumor site. The present study explores the utility of a clinical-stage monoclonal antibody that neutralizes IL-8 (HuMax-IL8) as a potential therapeutic option for TNBC.

View Article and Find Full Text PDF

Tumor growth and progression are the products of complex signaling networks between different cell types within the tumor and its surrounding stroma. In particular, established tumors are known to stimulate an inflammatory reaction via the secretion of cytokines, chemokines, and growth factors that favor the recruitment of a range of infiltrating immune cell populations into the tumor microenvironment. While potentially able to exert tumor control, this inflammatory reaction is typically seized upon by the tumor to promote its own growth and progression towards metastasis.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is recognized as a relevant process during the progression of carcinomas towards metastatic disease. Epithelial cancer cells undergoing an EMT program may acquire mesenchymal features, motility, invasiveness, and resistance to a variety of anticancer therapeutics. Preventing or reverting the EMT process in carcinomas has the potential to minimize tumor dissemination and the emergence of therapeutic resistance.

View Article and Find Full Text PDF

Controlling the spread of carcinoma cells to distant organs is the foremost challenge in cancer treatment, as metastatic disease is generally resistant to therapy and is ultimately incurable for the majority of patients. The plasticity of tumor cell phenotype, in which the behaviors and functions of individual tumor cells differ markedly depending upon intrinsic and extrinsic factors, is now known to be a central mechanism in cancer progression. Our expanding knowledge of epithelial and mesenchymal phenotypic states in tumor cells, and the dynamic nature of the transitions between these phenotypes has created new opportunities to intervene to better control the behavior of tumor cells.

View Article and Find Full Text PDF

The epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) erlotinib has been approved for years as a first-line therapy for patients harboring EGFR-sensitizing mutations. With the promising implementation of immunotherapeutic strategies for the treatment of lung cancer, there is a growing interest in developing combinatorial therapies that could utilize immune approaches in the context of conventional or targeted therapies. Tumor cells are known to evade immune attack by multiple strategies, including undergoing phenotypic plasticity via a process designated as the epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Interleukin-8 (IL-8, CXCL8) is a pro-inflammatory chemokine produced by various cell types to recruit leukocytes to sites of infection or tissue injury. Acquisition of IL-8 and/or its receptors CXCR1 and CXCR2 are known to be a relatively common occurrence during tumor progression. Emerging research now indicates that paracrine signaling by tumor-derived IL-8 promotes the trafficking of neutrophils and myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment, which have the ability to dampen anti-tumor immune responses.

View Article and Find Full Text PDF

A signaling pathway that is frequently deregulated in human carcinomas and has been explored as a therapeutic target involves the activation of the epidermal growth factor receptor (EGFR). Inhibition of EGFR via the small molecule inhibitors erlotinib and gefitinib commonly results in tumor resistance, even in patients with EGFR-mutant tumors that initially show substantial clinical responses. This study was designed to broaden our understanding of the molecular mechanisms of acquired resistance to erlotinib in lung cancer cells bearing wild type or mutated EGFR.

View Article and Find Full Text PDF

Background: Despite advances in the treatment of the most aggressive form of brain tumor, glioblastoma, patient prognosis remains disappointing. This failure in treatment has been attributed to dysregulated oncogenic pathways, as observed in other tumors. We and others have suggested the use of microRNAs (miRs) as therapeutic tools able to target multiple pathways in glioblastoma.

View Article and Find Full Text PDF

Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cells. We determined that mTOR and hypoxia-inducible factor-1α (HIF-1α) are key targets of DGKα inhibition, in addition to its regulation of other oncogenes.

View Article and Find Full Text PDF

The Notch pathway is dysregulated and a potential target in glioblastoma multiforme (GBM). Currently available Notch inhibitors block γ-secretase, which is necessary for Notch processing. However, Notch is first cleaved by α-secretase outside the plasma membrane, via a disintegrin and metalloproteinase-10 and -17.

View Article and Find Full Text PDF