Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC).
View Article and Find Full Text PDFAlfalfa (Medicago sativa) is the most cultivated fodder crop in Peru with 172,000 ha cultivated (MINAM 2019), and Arequipa is the top producing region with 40% of the national production in 2015 (Santamaría et al. 2016). In January-April 2019 (av.
View Article and Find Full Text PDFLittle is known about the major issues leading to postharvest losses in Peru, which are estimated to be 15-27%. We surveyed 503 farmers from the lowlands and Andean regions of Arequipa to learn more about the major grains produced and issues encountered during drying and storage. Rice, common bean, and quinoa were the most grown crops in the lowlands while starchy maize was the most cultivated crop in the highlands.
View Article and Find Full Text PDFPrior to harvest, maize kernels are invaded by a diverse population of fungal organisms that comprise the microbiome of the grain mass. Poor post-harvest practices and improper drying can lead to the growth of mycotoxigenic storage fungi and deterioration of grain quality. Hermetic storage bags are a low-cost technology for the preservation of grain during storage, which has seen significant adoption in many regions of Sub-Saharan Africa.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
February 2019
Fusarium verticillioides is a fungal pathogen that triggers stalk rots and ear rots in maize. In this study, we performed a comparative analysis of wild type and loss-of-virulence mutant F. verticillioides co-expression networks to identify subnetwork modules that are associated with its pathogenicity.
View Article and Find Full Text PDFand infect maize kernels and contaminate them with the mycotoxins aflatoxin, and fumonisin, respectively. Genetic resistance in maize to these fungi and to mycotoxin contamination has been difficult to achieve due to lack of identified resistance genes. The objective of this study was to identify new candidate resistance genes by characterizing their temporal expression in response to infection and comparing expression of these genes with genes known to be associated with plant defense.
View Article and Find Full Text PDFStenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.
View Article and Find Full Text PDFSmall hermetic bags (50 and 100 kg capacities) used by smallholder farmers in several African countries have proven to be a low-cost solution for preventing storage losses due to insects. The complexity of postharvest practices and the need for ideal drying conditions, especially in the Sub-Sahara, has led to questions about the efficacy of the hermetic bags for controlling spoilage by fungi and the potential for mycotoxin accumulation. This study compared the effects of environmental temperature and relative humidity at two locations (Indiana and Arkansas) on dry maize (14% moisture content) in woven polypropylene bags and Purdue Improved Crop Storage (PICS) hermetic bags.
View Article and Find Full Text PDFPurdue Improved Crop Storage (PICS) bags are used by farmers in Sub-Saharan Africa for pest management of stored grains and products, including maize. These bags hermetically seal the products, preventing exchange with external moisture and gases. Biological respiration within the bags create an environment that is unsuitable for insect development and fungal growth.
View Article and Find Full Text PDFFumonisin B1 (FB1), a polyketide mycotoxin produced by Fusarium verticillioides during the colonization of maize kernels, is detrimental to human and animal health. FST1 encodes a putative protein with 12 transmembrane domains; however, its function remains unknown. The FST1 gene is highly expressed by the fungus in the endosperm of maize kernels compared with the levels of expression in germ tissues.
View Article and Find Full Text PDFBackground: Maize, a crop of global significance, is vulnerable to a variety of biotic stresses resulting in economic losses. Fusarium verticillioides (teleomorph Gibberella moniliformis) is one of the key fungal pathogens of maize, causing ear rots and stalk rots. To better understand the genetic mechanisms involved in maize defense as well as F.
View Article and Find Full Text PDFBackground: Fusarium verticillioides causes an important seed disease on maize and produces the fumonisin group of mycotoxins, which are toxic to humans and livestock. A previous study discovered that a gene (FST1) in the pathogen affects fumonisin production and virulence. Although the predicted amino acid sequence of FST1 is similar to hexose transporters, previous experimental evidence failed to prove function.
View Article and Find Full Text PDFAspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization.
View Article and Find Full Text PDFMaize kernels are susceptible to infection by the opportunistic pathogen Aspergillus flavus. Infection results in reduction of grain quality and contamination of kernels with the highly carcinogenic mycotoxin, aflatoxin. To understanding host response to infection by the fungus, transcription of approximately 9000 maize genes were monitored during the host-pathogen interaction with a custom designed Affymetrix GeneChip® DNA array.
View Article and Find Full Text PDFAspergillus flavus is a cosmopolitan fungus able to respond to external stimuli and to shift both its trophic behaviour and the production of secondary metabolites, including that of the carcinogen aflatoxin (AF). To better understand the adaptability of this fungus, we examined genetic and phenotypic responses within the fungus when grown under four conditions that mimic different ecological niches ranging from saprophytic growth to parasitism. Global transcription changes were observed in both primary and secondary metabolism in response to these conditions, particularly in secondary metabolism where transcription of nearly half of the predicted secondary metabolite clusters changed in response to the trophic states of the fungus.
View Article and Find Full Text PDFAspergillus flavus is an opportunistic fungal pathogen that infects maize kernels pre-harvest, creating major human health concerns and causing substantial agricultural losses. Improved control strategies are needed, yet progress is hampered by the limited understanding of the mechanisms of infection. A series of studies were designed to investigate the localization, morphology and transcriptional profile of A.
View Article and Find Full Text PDFFEMS Microbiol Rev
January 2013
Plant pathogenic fungi Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum infect seeds of the most important food and feed crops, including maize, wheat, and barley. More importantly, these fungi produce aflatoxins, fumonisins, and trichothecenes, respectively, which threaten health and food security worldwide. In this review, we examine the molecular mechanisms and environmental factors that regulate mycotoxin biosynthesis in each fungus, and discuss the similarities and differences in the collective body of knowledge.
View Article and Find Full Text PDFIn Fusarium verticillioides, a ubiquitous pathogen of maize, virulence and mycotoxigenesis are regulated in response to the types and amounts of carbohydrates present in maize kernels. In this study, we investigated the role of a putative hexokinase-encoding gene (HXK1) in growth, development and pathogenesis. A deletion mutant (Δhxk1) of HXK1 was not able to grow when supplied with fructose as the sole carbon source, and growth was impaired when glucose, sucrose or maltotriose was provided.
View Article and Find Full Text PDFAspergillus flavus causes an ear rot of maize, often resulting in the production of aflatoxin, a potent liver toxin and carcinogen that impacts the health of humans and animals. Many aspects of kernel infection and aflatoxin biosynthesis have been studied but the precise effects of the kernel environment on A. flavus are poorly understood.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2011
The putative hexose transporter gene fst1 in Fusarium verticillioides was identified previously by microarray analysis as a gene that was more highly expressed during colonization of autoclaved maize endosperm than germ. In contrast to a previous study, in which disruption of fst1 did not affect growth of the pathogen on autoclaved maize kernels, in the current study, we demonstrated that disruption of fst1 delayed growth and symptom development on wounded maize ears. Characterization of the fst1 promoter revealed that regulation of fst1 expression was similar to that of fumonisin biosynthetic (fum) genes; expression was highest during growth on endosperm tissue and repressed by elevated concentrations of ammonium in the growth medium.
View Article and Find Full Text PDFSpecies of Aspergillus produce a diverse array of secondary metabolites, and recent genomic analysis has predicted that these species have the capacity to synthesize many more compounds. It has been possible to infer the presence of 55 gene clusters associated with secondary metabolism in Aspergillus flavus; however, only three metabolic pathways-aflatoxin, cyclopiazonic acid (CPA) and aflatrem-have been assigned to these clusters. To gain an insight into the regulation of and to infer the ecological significance of the 55 secondary metabolite gene clusters predicted in A.
View Article and Find Full Text PDFFusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f.
View Article and Find Full Text PDFAflatoxins are toxic secondary metabolites produced by a 70-kb cluster of genes in Aspergillus flavus. The cluster genes are coordinately regulated and reside as a single copy within the genome. Diploids between a wild-type strain and a mutant (649) lacking the aflatoxin gene cluster fail to produce aflatoxin or transcripts of the aflatoxin pathway genes.
View Article and Find Full Text PDFMaize is one of the more important agricultural crops in the world and, under certain conditions, prone to attack from pathogenic fungi. One of these, Aspergillus flavus, produces toxic and carcinogenic metabolites, called aflatoxins, as byproducts of its infection of maize kernels. The alpha-amylase of A.
View Article and Find Full Text PDF