Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale.
View Article and Find Full Text PDFA growing variety of biological macromolecules are in development for use as active ingredients in topical therapies and vaccines. Dermal delivery of biomacromolecules offers several advantages compared to other delivery methods, including improved targetability, reduced systemic toxicity, and decreased degradation of drugs. However, this route of delivery is hampered by the barrier function of the skin.
View Article and Find Full Text PDFMiniaturized devices capable of active swimming at low Reynolds numbers are of fundamental importance and possess potential biomedical utility. The design of colloidal microswimmers requires not only miniaturizing reconfigurable structures but also understanding their interactions with media at low Reynolds numbers. We investigate the dynamics of "microscallops" made of asymmetric magnetic cubes, which are assembled and actuated using magnetic fields.
View Article and Find Full Text PDFβ-Adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca(2+) handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy.
View Article and Find Full Text PDF