Publications by authors named "Charles Varin"

Inclusion of the instantaneous Kerr nonlinearity in the FDTD framework leads to implicit equations that have to be solved iteratively. In principle, explicit integration can be achieved with the use of anharmonic oscillator equations, but it tends to be unstable and inappropriate for studying strong-field phenomena like laser filamentation. In this paper, we show that nonlinear susceptibility can be provided instead by a harmonic oscillator driven by a nonlinear force, chosen in a way to reproduce the polarization obtained from the solution of the quantum mechanical two-level equations.

View Article and Find Full Text PDF

A complete time-resolved x-ray imaging experiment of laser heated solid-density hydrogen clusters is modeled by microscopic particle-in-cell simulations that account self-consistently for the microscopic cluster dynamics and electromagnetic wave evolution. A technique is developed to retrieve the anisotropic nanoplasma expansion from the elastic and inelastic x-ray scattering data. Our method takes advantage of the self-similar evolution of the nanoplasma density and enables us to make movies of ultrafast nanoplasma dynamics from pump-probe x-ray imaging experiments.

View Article and Find Full Text PDF

We propose a simple laser-driven electron acceleration scheme based on tightly focused radially polarized laser pulses for the production of femtosecond electron bunches with energies in the few-hundreds-of-keV range. In this method, the electrons are accelerated forward in the focal volume by the longitudinal electric field component of the laser pulse. Three-dimensional test-particle and particle-in-cell simulations reveal the feasibility of generating well-collimated electron bunches with an energy spread of 5% and a temporal duration of the order of 1 fs.

View Article and Find Full Text PDF

In the study of laser-driven electron acceleration, it has become customary to work within the framework of paraxial wave optics. Using an exact solution to the Helmholtz equation as well as its paraxial counterpart, we perform numerical simulations of electron acceleration with a high-power TM(01) beam. For beam waist sizes at which the paraxial approximation was previously recognized valid, we highlight significant differences in the angular divergence and energy distribution of the electron bunches produced by the exact and the paraxial solutions.

View Article and Find Full Text PDF

We introduce a microscopic particle-in-cell approach that allows bridging the microscopic and macroscopic realms of laser-driven plasma physics. As a first application, resonantly driven cluster nanoplasmas are investigated. Our analysis reveals an attosecond plasma-wave dynamics in clusters with radii R is approximately equal to 30 nm.

View Article and Find Full Text PDF

In this paper we describe how relativistic attosecond electron pulses could be produced in free space by ultrafast and ultraintense transverse magnetic (TM) laser beams. Numerical solutions of the time-dependent three-dimensional Maxwell-Lorentz equations reveal that electrons initially at rest at the waist of a multi-TW pulsed TM01 laser beam can be accelerated to multi-MeV energies. The use of a few-cycle laser beam and a compact initial electron cloud forces the particles to effectively interact with a single half-cycle of the laser field and form a pulse of attosecond duration.

View Article and Find Full Text PDF

A purely time-domain approach is proposed for the propagation of vectorial ultrafast beams in free space beyond the paraxial and the slowly varying envelope approximations. As an example of application of this method, we describe in detail the vectorial properties of an ultrafast tightly focused transverse-magnetic (TM(01)) beam, where special attention is given to the longitudinal electric field component. We show that for spot sizes at the waist comparable to the wavelength, the beam diverges more rapidly than expected from paraxial theory.

View Article and Find Full Text PDF

In this paper we describe a laser acceleration scheme where an electron is accelerated from rest to GeV energies by the longitudinal electric field of an ultrashort transverse magnetic ( TM01 ) optical pulse. The on-axis longitudinal electric field of the pulse is obtained from the free-space divergence equation beyond the so-called slowly-varying-envelope approximation. The instantaneous electron dynamics is studied; numerical simulations predict net energy gains in the GeV range for laser intensities reaching 10(22) W/ cm(2) .

View Article and Find Full Text PDF