Publications by authors named "Charles U Pittman"

Apple ring rot, caused by the pathogenic fungus , has inflicted substantial economic losses and caused significant food safety concerns. In this study, a pimarane-type diterpenoid, diaporthein B (DTB), isolated from a marine-derived fungus, exhibited significant antifungal activity against , with an EC value of 8.8 μg/mL.

View Article and Find Full Text PDF

Here, we offer thoughts concerning a 'zero residual nanoadsorbent toxicity' environmental policy which we strongly advocate. Our discussions in support of this policy are based on the adage 'Prevention is better than cure'. Besides emphasizing the need for strict regulations (regional and international), research and development avenues are highlighted for the technology that can achieve 'zero tolerance' for residual nanoadsorbent levels escaping and building up in receiving ecosystems.

View Article and Find Full Text PDF

Feedstock characteristics impact biochar physicochemical properties, and reproducible biochar properties are essential for any potential application. However, in most articles, feedstock aspects (i.e.

View Article and Find Full Text PDF

Nanobiochar is an advanced nanosized biochar with enhanced properties and wide applicability for a variety of modern-day applications. Nanobiochar can be developed easily from bulk biochar through top-down approaches including ball-milling, centrifugation, sonication, and hydrothermal synthesis. Nanobiochar can also be modified or engineered to obtain "engineered nanobiochar" or biochar nanocomposites with enhanced properties and applications.

View Article and Find Full Text PDF

Biochar can directly hold cations in soil because of the negative charge that exists on its surfaces. Besides, improving soil cation exchange capacity, the negative charges on biochar surfaces can buffer acid soil by protonation and deprotonation mechanisms. Moreover, biochar ameliorates soil acidity due to the presence of oxides, carbonates, and hydroxides of its basic cations (Ca, Na, K, and Mg).

View Article and Find Full Text PDF

Molybdenum (Mo) is a naturally-occurring trace element in drinking water. Most commonly, molybdate anions (MoO) are in well water and breast milk. In addition, it is used in medical image testing.

View Article and Find Full Text PDF

A practical and direct electrophilic polymerization of hexafluoroacetone hydrate with diphenyl ether toward the preparation of semi-fluorinated polyaryl ethers (PAE) is reported. Electrophilic aromatic substitution (EAS) polymerization under interfacial conditions with phase transfer catalyst (Aliquat 336) proceeds in trifluoromethanesulfonic anhydride by generation of trifluoromethanesulfonic acid and the protonated hexafluoroacetone (HFA) in situ affording 1,1,1,3,3,3-hexafluoroisopropylidene (6F) PAE with high regioselectivity (4,4'-DPE) and high molecular weight (≈60 kDa). Although first reported in a 1966 US Patent by DuPont using harsh conditions, improved synthetic methods or modern characterization has not been disclosed until now.

View Article and Find Full Text PDF

We now report that some chiral compounds, like alcohols, which are not sterically hindered atropisomers nor epimer mixtures, exhibit two sets of simultaneous NMR spectra in CDCl. Some other chiral alcohols also simultaneously exhibit two different NMR spectra in the solid state because two different conformers, and had different sizes because their corresponding bond lengths and angles are different. These structures were confirmed in the same solid state by X-ray.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) can cause deleterious effects at low concentrations (70 ng/L). Their remediation is challenging. Aqueous μg/L levels of PFOS, PFOS, PFOSA, PFBS, GenX, PFHxS, PFPeA, PFHxA, and PFHpA (abbreviations defined in Table 1) multi-component adsorption (pH dependence, kinetics, isotherms, fixed-bed adsorption, regeneration, complex matrix) was studied on commercial Douglas fir biochar (BC) and its FeO-containing BC.

View Article and Find Full Text PDF

This is the first report of the metal Fe-Ti oxide/biochar (FeTiO/BC) composite for simultaneous removal of aqueous Pb, Cr, F and methylene blue (MB). Primary FeTiO nano particles and aggregates were dispersed on a high surface area Douglas fir BC (∼700 m/g) by a simple chemical co-precipitation method using FeCl and TiO(acac) salts treated by base and heated to 80 °C. This was followed by calcination at 500 °C.

View Article and Find Full Text PDF

This study compared the lead (Pb) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt.

View Article and Find Full Text PDF

Biochar adsorbents can remove environmental pollutants and the remediation of Cr(VI) and nitrate are considered. Cr(VI) is a proven carcinogen causing serious health issues in humans and nitrate induced eutrophication causes negative effect on aquatic systems around the world. Douglas fir biochar (DFBC), synthesized by fast pyrolysis during syn gas production, was treated with aniline.

View Article and Find Full Text PDF

Environmental (pH, temperature ionic strength, cations, anions) and process (pyrolysis temperature, particle size, adsorbent dosage, initial concentration) parameters were evaluated for ciprofloxacin and acetaminophen sorption onto a series of sustainable banana peel biochars. Ciprofloxacin and acetaminophen were chosen as model pharmaceuticals for removal owing to their worldwide presence in aquatic systems. After pyrolytic preparation from 450 to 750 °C, the biochars were qualitatively and quantitatively characterized by physicochemical, morphological, mineralogical and elemental analyses.

View Article and Find Full Text PDF

Aqueous phosphate uptake is needed to reduce global eutrophication. Negatively charged adsorbent surfaces usually give poor phosphate sorption. Chemically- and thermally-modified lignite (CTL) was prepared by impregnating low-cost lignite (RL) with Ca and Mg cations, basified with KOH (pH ̴ 13.

View Article and Find Full Text PDF

A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.

View Article and Find Full Text PDF

Phosphate is a primary plant nutrient, serving integral role in environmental stability. Excessive phosphate in water causes eutrophication; hence, phosphate ions need to be harvested from soil nutrient levels and water and used efficiently. Fe-Mg (1:2) layered double hydroxides (LDH) were chemically co-precipitated and widely dispersed on a cheap, commercial Douglas fir biochar (695 m/g surface area and 0.

View Article and Find Full Text PDF

Commercialization of novel adsorbents technology for providing safe drinking water must consider scale-up methodological approaches to bridge the gap between laboratory and industrial applications. These imply complex matrix analysis and large-scale experiment designs. Arsenic concentrations up to 200-fold higher (2000 µg/L) than the WHO safe drinking limit (10 µg/L) have been reported in Latin American drinking waters.

View Article and Find Full Text PDF

The year 2020 brought the news of the emergence of a new respiratory disease (COVID-19) from Wuhan, China. The disease is now a global pandemic and is caused by a virus named SARS-CoV-2 by international bodies. Important viral transmission sources include human contact, respiratory droplets and aerosols, and through contact with contaminated objects.

View Article and Find Full Text PDF

Biochar has become a popular research topic in sustainable chemistry for use both in agriculture and pollution abatement. To enhance aqueous Cr(VI), Pb(II) and Cd(II) removal efficiency, high surface area (535 m/g) byproduct Douglas fir biochar (DFBC) from commercial syn-gas production obtained by fast pyrolysis (900-1000 °C, 1-10 s), was subjected to a KOH activation. KOH-activated biochar (KOHBC) underwent a remarkable surface area increase to 1049 m/g and a three-fold increase in pore volume (BET analysis).

View Article and Find Full Text PDF

Biochar-based hybrid composites containing added nano-sized phases are emerging adsorbents. Biochar, when functionalized with nanomaterials, can enhance pollutant removal when both the nanophase and the biochar surface act as adsorbents. Three different pine wood wastes (particle size < 0.

View Article and Find Full Text PDF

Pine needle litter in Himalayan forests leads to forest fires, ground water recharge inhibition, soil acidification and contamination, and stops the growth of grass and plants. This study provides a possible solution for pine needle litter problem by converting it to biochar. Pine needle litter lying on the ground for approximately a month was collected from the Himalayan region.

View Article and Find Full Text PDF

Modification of commercially available Douglas fir biochar (BC) by iron oxide nanoparticle precipitation from aqueous Fe/Fe salt solutions upon NaOH treatment generated a hybrid adsorbent (MBC) that removed three common emerging aqueous contaminants, a stimulant (caffeine) and two anti-inflammatory drugs (ibuprofen and acetylsalicylic acid) through batch sorption. FeO particles (12.3 ± 7.

View Article and Find Full Text PDF

Rice and wheat husks were converted to biochars by slow pyrolysis (1 h) at 600 °C. Iron oxide rice husk hybrid biochar (RHIOB) and wheat husk hybrid biochar (WHIOB) were synthesized by copyrolysis of FeCl-impregnated rice or wheat husks at 600 °C. These hybrid sorbents were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, physical parameter measurement system, and Brunauer-Emmett-Teller (BET) surface area techniques.

View Article and Find Full Text PDF

Oil spills cause massive loss of aquatic life. Oil spill cleanup can be very expensive, have secondary environmental impacts, or be difficult to implement. This study employed five different adsorbents: (1) commercially available byproduct Douglas fir biochar (BC) (SA ∼ 695 m/g, pore volume ∼ 0.

View Article and Find Full Text PDF

Discarded bamboo culms of Guadua chacoensis were used for biochar remediation of aqueous As(V). Raw biochar (BC), activated biochar (BCA), raw FeO nanoparticle-covered biochar (BC-Fe), and activated biochar covered with FeO nanoparticles (BCA-Fe) were prepared, characterized and tested for As(V) aqueous adsorption. The goal is to develop an economic, viable, and sustainable adsorbent to provide safe arsenic-free water.

View Article and Find Full Text PDF