Hepatocellular carcinoma (HCC) accounts for >700,000 deaths worldwide, largely related to poor rates of diagnosis. Our previous work identified glycoproteins with increased levels of fucosylation in HCC. Plate-based assays to measure this change were compromised by increased levels of heterophilic antibodies with glycan lacking terminal galactose residues, which allowed for increased binding to the lectins used in these assays.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) has the greatest increase in mortality among all solids tumors in the United States related to low rates of early tumor detection. Development of noninvasive biomarkers for the early detection of HCC may reduce HCC-related mortality. We have developed an algorithm that combines routinely observed clinical values into a single equation that in a study of >3,000 patients from 5 independent sites improved detection of HCC as compared with the currently used biomarker, alpha-fetoprotein (AFP), by 4% to 20%.
View Article and Find Full Text PDFA highly convergent total synthesis of 12,13-desoxyepothilone B (4, Epothilone D) is described involving the coupling of vinyl iodide (5) and olefin (6). Key steps in the synthesis are the introduction of chirality at C15 via highly enantioselective lipase-mediated enzymatic resolution, diastereoselective alkylation at C8, highly diastereoselective Evans aldol reaction to establish C6-C7, and Mukaiyama aldol reaction to introduce chiral center C3. Palladium catalyzed Suzuki coupling of (5) and (6) provided the methyl ester (27), which was converted to 12,13-desoxyepothilone B (4).
View Article and Find Full Text PDFPurpose: Docosahexaenoic acid (DHA)-paclitaxel, a novel conjugate formed by covalently linking the natural fatty acid DHA to paclitaxel, was designed as a prodrug targeting intratumoral activation. This Phase I trial examined its toxicity and pharmacokinetics (PKs).
Experimental Design: Patients with advanced refractory solid tumors received a 2-h i.
Purpose: Docosahexaenoic acid-paclitaxel is as an inert prodrug composed of the natural fatty acid DHA covalently linked to the C2'-position of paclitaxel (M. O. Bradley et al.
View Article and Find Full Text PDF