Publications by authors named "Charles Strother"

Purpose: The critical time between stroke onset and treatment was targeted for reduction by integrating physiological imaging into the angiography suite, potentially improving clinical outcomes. The evaluation was conducted to compare C-Arm cone beam CT perfusion (CBCTP) with multi-detector CT perfusion (MDCTP) in patients with acute ischemic stroke (AIS).

Approach: Thirty-nine patients with anterior circulation AIS underwent both MDCTP and CBCTP.

View Article and Find Full Text PDF

Background: Emergency carotid artery stenting (CAS) is a frequent endovascular procedure, especially in combination with intracranial thrombectomy. Balloon guide catheters are frequently used in these procedures. Our aim was to determine if mechanical aspiration through the working lumen of a balloon occlusion catheter during the steps of a carotid stenting procedure achieve flow rates that may lead to internal carotid artery (ICA) flow reversal which consecutively may prevent distal embolism.

View Article and Find Full Text PDF

Temporal resolution in time-resolved cone-beam CT (TR-CBCT) imaging is often limited by the time needed to acquire a complete data set for image reconstruction. With the recent developments of performing nearly limited-view artifact-free reconstruction from data in a limited-view angle range and a prior image, temporal resolution of TR-CBCT imaging can be improved. One such an example is the use of Simultaneous Multiple Artifacts Reduction in Tomographic RECONstruction (SMART-RECON) [1] technique.

View Article and Find Full Text PDF

Purpose: The development and clinical employment of a computed tomography (CT) imaging system benefit from a thorough understanding of the statistical properties of the output images; cerebral CT perfusion (CTP) imaging system is no exception. A series of articles will present statistical properties of CTP systems and the dependence of these properties on system parameters. This Part I paper focuses on the signal and noise properties of cerebral blood volume (CBV) maps calculated using a nondeconvolution-based method.

View Article and Find Full Text PDF

The objective of this study was to use image-based computational fluid dynamics (CFD) techniques to analyze the impact that multiple closely spaced intracranial aneurysm (IAs) of the supra-clinoid segment of the internal carotid artery (ICA) have on each other's hemodynamic characteristics. The vascular geometry of fifteen (15) subjects with 2 IAs was gathered using a 3D digital subtraction angiography clinical system. Two groups of computer models were created for each subject's vascular geometry: both IAs present (model A) and after removal of one IA (model B).

View Article and Find Full Text PDF

Purpose: Four-dimensional (4D) DSA reconstruction provides three-dimensional (3D) time-resolved visualization of contrast bolus passage through arterial vasculature in the interventional setting. The purpose of this study was to evaluate the feasibility of using these data in measuring blood velocity and flow.

Methods: The pulsatile signals in the time concentration curves (TCCs) measured at different points along a vessel are markers of the movement of a contrast bolus and thus of blood flow.

View Article and Find Full Text PDF

Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON).

View Article and Find Full Text PDF

We investigate the use of tomosynthesis in 4D DSA to improve the accuracy of reconstructed vessel time-attenuation curves (TACs). It is hypothesized that a narrow-angle tomosynthesis dataset for each time point can be exploited to reduce artifacts caused by vessel overlap in individual projections. 4D DSA reconstructs time-resolved 3D angiographic volumes from a typical 3D DSA scan consisting of mask and iodine-enhanced C-arm rotations.

View Article and Find Full Text PDF

Background And Purpose: Safe and effective use of newly developed devices for aneurysm treatment requires the ability to make accurate measurements in the angiographic suite. Our purpose was to determine the parameters that optimize the geometric accuracy of three-dimensional (3D) vascular reconstructions.

Methods: An in vitro flow model consisting of a peristaltic pump, plastic tubing, and 3D printed patient-specific aneurysm models was used to simulate blood flow in an intracranial aneurysm.

View Article and Find Full Text PDF

A conventional three-dimensional/four-dimensional (3D/4D) digital subtraction angiogram (DSA) requires two rotational acquisitions (mask and fill) to compute the log-subtracted projections that are used to reconstruct a 3D/4D volume. Since all of the vascular information is contained in the fill acquisition, it is hypothesized that it is possible to reduce the x-ray dose of the mask acquisition substantially and still obtain subtracted projections adequate to reconstruct a 3D/4D volume with noise level comparable to a full-dose acquisition. A full-dose mask and fill acquisition were acquired from a clinical study to provide a known full-dose reference reconstruction.

View Article and Find Full Text PDF

Purpose: Blood flow in intracranial aneurysms has, until recently, been considered to be disturbed but still laminar. Recent high resolution computational studies have demonstrated, in some situations, however, that the flow may exhibit high frequency fluctuations that resemble weakly turbulent or transitional flow. Due to numerous assumptions required for simplification in computational fluid dynamics (CFD) studies, the occurrence of these events, in vivo, remains unsettled.

View Article and Find Full Text PDF

Purpose: Biplane angiography systems provide time resolved 2D fluoroscopic images from two different angles, which can be used for the positioning of interventional devices such as guidewires and catheters. The purpose of this work is to provide a novel algorithm framework, which allows the 3D reconstruction of these curvilinear devices from the 2D projection images for each time frame. This would allow creating virtual projection images from arbitrary view angles without changing the position of the gantries, as well as virtual endoscopic 3D renderings.

View Article and Find Full Text PDF

In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super-short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system.

View Article and Find Full Text PDF

Currently, clinical acquisition of IV 3D-DSA requires two separate scans: one mask scan without contrast medium and a filled scan with contrast injection. Having two separate scans adds radiation dose to the patient and increases the likelihood of suffering inadvertent patient motion induced mis-registration and the associated mis-registraion artifacts in IV 3D-DSA images. In this paper, a new technique, SMART-RECON is introduced to generate IV 3D-DSA images from a single Cone Beam CT (CBCT) acquisition to eliminate the mask scan.

View Article and Find Full Text PDF

Background And Purpose: Multimodal imaging using cone beam C-arm computed tomography (CT) may shorten the delay from ictus to revascularization for acute ischemic stroke patients with a large vessel occlusion. Largely because of limited temporal resolution, reconstruction of time-resolved CT angiography (CTA) from these systems has not yielded satisfactory results. We evaluated the image quality and diagnostic value of time-resolved C-arm CTA reconstructed using novel image processing algorithms.

View Article and Find Full Text PDF

Background: Accurate vessel size measurement is important for neurointervention. Modern angiographic equipment offers various two-dimensional (2D) and 3D measurement methods that have not been systematically evaluated for accuracy and reliability.

Objective: To evaluate these methods using anthropomorphic vessel phantoms.

View Article and Find Full Text PDF

Purpose: Recent efforts in the reconstruction of interventional devices from two distinct views require the segmentation of the object in both fluoroscopic images. Noise might decrease the quality of the segmentation and cause artifacts in the reconstruction. The noise level depends on the x-ray dose the patient is exposed to.

View Article and Find Full Text PDF

Background: The angioarchitectural features of an arteriovenous malformation (AVM) provide key information regarding natural history and treatment planning. Because of rapid filling and vascular overlap, two-dimensional (2D) and three-dimensional (3D) digital subtraction angiography (DSA) are often suboptimal for evaluation of these features. We have developed an algorithm that derives a series of fully time-resolved 3D DSA volumes (four-dimensional (4D) DSA) at up to 30 frames/s from a conventional 3D DSA.

View Article and Find Full Text PDF

Objective: The WEB (WEB aneurysm embolization system, Sequent Medical, Aliso Viejo, California, USA) is a self-expanding, nitinol, mesh device designed to achieve aneurysm occlusion after endosaccular deployment. The WEB Occlusion Scale (WOS) is a standardized angiographic assessment scale for reporting aneurysm occlusion achieved with intrasaccular mesh implants. This study was performed to assess the interobserver variability of the WOS.

View Article and Find Full Text PDF

Recent developments in medical imaging and advanced computer modeling simulations) now enable studies designed to correlate either simulated or measured "patient-specific" parameters with the natural history of intracranial aneurysm i.e., ruptured or unruptured.

View Article and Find Full Text PDF

Background: Quantifiable parameters to evaluate the effectiveness of flow diverters (FDs) are desirable. We measured time-density curves (TDCs) and calculated quantifiable parameters in the rabbit elastase-induced aneurysm model after stent (Neuroform [NF]) and FD (Pipeline embolisation device [PED]) treatment.

Methods: Sixteen rabbit elastase-induced aneurysms were treated with FD (n = 9) or NF (n = 5).

View Article and Find Full Text PDF

The introduction of digital subtraction angiography (DSA) in 1980 provided a method for real time 2D subtraction imaging. Later, 4D magnetic resonance (MR) angiography emerged beginning with techniques like Keyhole and time-resolved imaging of contrast kinetics (TRICKS) that provided frame rates of one every 5 seconds with limited spatial resolution. Undersampled radial acquisition was subsequently developed.

View Article and Find Full Text PDF

Purpose: Our purpose was to compare quantitatively velocity fields in and around experimental canine aneurysms as measured using an accelerated 4D PC-MR angiography (MRA) method and calculated based on animal-specific CFD simulations.

Methods: Two animals with a surgically created bifurcation aneurysm were imaged using an accelerated 4D PC-MRA method. Meshes were created based on the geometries obtained from the PC-MRA and simulations using "subject-specific" pulsatile velocity waveforms and geometries were then solved using a commercial CFD solver.

View Article and Find Full Text PDF

Ultrasound Doppler (UD) velocity measurements are commonly used to quantify blood flow velocities in vivo. The aim of our work was to investigate the accuracy of in vivo spectral Doppler measurements of velocity waveforms. Waveforms were derived from spectral Doppler signals and corrected for intrinsic spectral broadening errors by applying a previously published algorithm.

View Article and Find Full Text PDF