Publications by authors named "Charles Stirton"

In this study, , a new species of from the Agulhas Plain Region of the Western Cape Province, South Africa, is described. A composite photographic plate is included along with a distribution map, description of habitat and ecology and proposed IUCN conservation status. is unique in the group by having digitately compound (vs.

View Article and Find Full Text PDF

The papilionoid legume genus Ormosia (Fabaceae) comprises about 150 species of trees and exhibits a striking disjunct geographical distribution between the New World- and Asian and Australasian wet tropics and subtropics. Modern classifications of Ormosia are not grounded on a well-substantiated phylogenetic hypothesis and have been limited to just portions of the geographical range of the genus. The lack of an evolutionarily-based foundation for systematic studies has hindered taxonomic work on the genus and prevented the testing of biogeographical hypotheses related to the origin of the Old World/New World disjunction and the individual dispersal histories within both areas.

View Article and Find Full Text PDF

Background And Aims: The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves.

View Article and Find Full Text PDF

Over 760 legume species occur in the ecologically-heterogeneous Core Cape Subregion (CCR) of South Africa. This study tested whether the main symbionts of CCR legumes ( and ) are phylogenetically structured by altitude, pH and soil types. Rhizobial strains were isolated from field nodules of diverse CCR legumes and sequenced for 16S ribosomic RNA (rRNA), recombinase A () and N-acyltransferase ().

View Article and Find Full Text PDF

Unlabelled: Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography.

View Article and Find Full Text PDF

The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata.

View Article and Find Full Text PDF

Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels.

View Article and Find Full Text PDF

The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome.

View Article and Find Full Text PDF

Rhizobial diversity and host preferences were assessed in 65 native Fynbos legumes of the papilionoid legume tribes Astragaleae, Crotalarieae, Genisteae, Indigofereae, Millettieae, Phaseoleae, Podalyrieae, Psoraleeae and Sesbanieae. Sequence analyses of chromosomal 16S rRNA, recA, atpD and symbiosis-related nodA, nifH genes in parallel with immunogold labelling assays identified the symbionts as alpha- (Azorhizobium, Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) and beta-rhizobial (Burkholderia) lineages with the majority placed in the genera Mesorhizobium and Burkholderia showing a wide range of host interactions. Despite a degree of symbiotic promiscuity in the tribes Crotalarieae and Indigofereae nodulating with both alpha- and beta-rhizobia, Mesorhizobium symbionts appeared to exhibit a general host preference for the tribe Psoraleeae, whereas Burkholderia prevailed in the Podalyrieae.

View Article and Find Full Text PDF

Unlabelled: Botanical work since 2008 on the Sleeping Giant section of the Kamdebooberge (Sneeuberg mountain complex, Eastern Cape, South Africa) has indicated that these mountains may be of significant conservation value. Accordingly, a precursory, rapid multi-disciplinary biodiversity assessment was undertaken in January 2011, focusing on plants, tetrapod vertebrates and leafhoppers. The botanical results confirm the Kamdebooberge as being of high botanical conservation value, hosting three strict endemics, healthy populations of five other Sneeuberg endemics, and fynbos communities comprising species not found elsewhere in the Sneeuberg.

View Article and Find Full Text PDF