Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels.
View Article and Find Full Text PDFUnlabelled: Of the more than 100 types of brain cancer, glioblastoma (GBM) is the deadliest. As GBM stem cells (GSCs) are considered to be responsible for therapeutic resistance and tumor recurrence, effective targeting and elimination of GSCs could hold promise for preventing GBM recurrence and achieving potential cures. We show here that , which encodes a histone-3, lysine-9 methyltransferase, plays a critical role in GSC maintenance and GBM progression.
View Article and Find Full Text PDFFanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress.
View Article and Find Full Text PDFA mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/β, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II-mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance and .
View Article and Find Full Text PDFRepetitive elements (REs) are normally transcriptionally silenced in somatic cells by repressive epigenetic modifications, which are thought to include DNA methylation and histone modifications such as deacetylation, H3K9me3, and H4K20me3. Although, it is unclear how RE silencing is maintained through DNA replication cycles in rapidly growing cancer cells. On the other hand, the reactivation of endogenous retroelements beyond a threshold level of tolerance in cancer cells, such as by treatment with DNA demethylating agents or HDAC or LSD1 inhibitors, can induce viral mimicry responses that augment certain cancer therapies, including immunotherapy.
View Article and Find Full Text PDFRepetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication.
View Article and Find Full Text PDFInt J Oncol
December 2020
Triple‑negative breast cancer (TNBC) accounts for 10‑15% of all breast cancer cases. TNBCs lack estrogen and progesterone receptors and express low levels of HER2, and therefore do not respond to hormonal or anti‑HER2 therapies. TNBC is a particularly aggressive form of breast cancer that generally displays poorer prognosis compared to other breast cancer subtypes.
View Article and Find Full Text PDFInhibition of WEE1 kinase by AZD1775 has shown promising results in clinical cancer trials, but markers predicting AZD1775 response are lacking. Here we analysed AZD1775 response in a panel of human breast cancer (BC) cell lines by global proteome/transcriptome profiling and identified two groups of basal-like BC (BLBCs): 'PTEN low' BLBCs were highly sensitive to AZD1775 and failed to recover following removal of AZD1775, while 'PTEN high' BLBCs recovered. AZD1775 induced phosphorylation of DNA-PK, protecting cells from replication-associated DNA damage and promoting cellular recovery.
View Article and Find Full Text PDFCell division cycle (dc) inase ubunit (CKS) proteins bind cyclin-dependent kinases (CDKs) and play important roles in cell division control and development, though their precise molecular functions are not fully understood. Mammals express two closely related paralogs called CKS1 and CKS2, but only CKS2 is expressed in the germ line, indicating that it is solely responsible for regulating CDK functions in meiosis. Using knockout mice, we show that CKS2 is a crucial regulator of maturation-promoting factor (MPF; CDK1-cyclin A/B) activity in meiosis.
View Article and Find Full Text PDFThe cyclin-dependent kinase-interacting proteins Cyclin-dependent Kinase Subunit 1 and 2 (CKS1 and 2) are frequently overexpressed in cancer and linked to increased aggressiveness and poor prognoses. We previously showed that CKS protein overexpression overrides the replication stress checkpoint activated by oncoproteins. Since CKS overexpression and oncoprotein activation/overexpression are often observed in the same tumors, we have hypothesized that CKS-mediated checkpoint override could enhance the ability of premalignant cells experiencing oncoprotein-induced replication stress to expand.
View Article and Find Full Text PDFEpigenetic abnormalities are now realized as important as genetic alterations in contributing to the initiation and progression of cancer. Recent advancements in the cancer epigenetics field have identified extensive alterations of the epigenetic network in human cancers, including histone modifications and DNA methylation. F-box proteins, the substrate receptors of SCF (SKP1-Cullin1-F-box protein) E3 ubiquitin ligases, can directly and indirectly affect the balance of epigenetic regulation.
View Article and Find Full Text PDFCyclin E1 regulates the initiation of S-phase in cellular division. However, in many cancers, cyclin E1 is aberrantly overexpressed and this molecular phenotype correlates with increased tumor aggressiveness and poor patient survival. The molecular cause(s) of cyclin E1 abnormalities in cancers is poorly understood.
View Article and Find Full Text PDFSCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28) activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway.
View Article and Find Full Text PDFCellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGF-β1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells.
View Article and Find Full Text PDFCyclin-dependent kinase subunit (Cks) proteins are small cyclin-dependent kinase-interacting proteins that are frequently overexpressed in breast cancer, as well as in a broad spectrum of other human malignancies. However, the mechanistic link between Cks protein overexpression and oncogenesis is still unknown. In this work, we show that overexpression of Cks1 or Cks2 in human mammary epithelial and breast cancer-derived cells, as well as in other cell types, leads to override of the intra-S-phase checkpoint that blocks DNA replication in response to replication stress.
View Article and Find Full Text PDFIntroduction: Mutational inactivation of the FBXW7/hCDC4 tumor suppressor gene (TSG) is common in many cancer types, but infrequent in breast cancers. This study investigates the presence and impact of FBXW7/hCDC4 promoter methylation in breast cancer.
Methods: FBXW7/hCDC4-β expression and promoter methylation was assessed in 161 tumors from two independent breast cancer cohorts.
Background: Post-translational modifications (PTMs) impact on the stability, cellular location, and function of a protein thereby achieving a greater functional diversity of the proteome. To fully appreciate how PTMs modulate signaling networks, proteome-wide studies are necessary. However, the evaluation of PTMs on a proteome-wide scale has proven to be technically difficult.
View Article and Find Full Text PDFEukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein complex associates with and promotes the iron-dependent ubiquitination and degradation of IRP2.
View Article and Find Full Text PDFE-type cyclins (E1 and E2) regulate the S phase program in the mammalian cell division cycle. Expression of cyclin E1 and E2 is frequently deregulated in a variety of cancer types and a wealth of experimental evidence supports an oncogenic role of these proteins in human tumorigenesis. Although the molecular mechanisms responsible for cyclin E1 deregulation in cancer are well defined, little is known regarding cyclin E2.
View Article and Find Full Text PDFCks proteins associate with cyclin-dependent kinases and have therefore been assumed to play a direct role in cell cycle regulation. Mammals have two paralogs, Cks1 and Cks2, and individually deleting the gene encoding either in the mouse has previously been shown not to impact viability. In this study we show that simultaneously disrupting CKS1 and CKS2 leads to embryonic lethality, with embryos dying at or before the morula stage after only two to four cell division cycles.
View Article and Find Full Text PDF