Background: Measles is a highly infectious respiratory disease which causes 122,000 deaths annually. Although measles vaccine is extremely safe and effective, vaccine coverage could be improved by a vaccine that is more easily administered and transported. We developed an inhalable dry powder measles vaccine (MVDP) and two delivery devices, and demonstrated safety, immunogenicity, and efficacy of the vaccine in preclinical studies.
View Article and Find Full Text PDFMeasles remains an important cause of childhood mortality worldwide. Sustained high vaccination coverage is the key to preventing measles deaths. Because measles vaccine is delivered by injection, hurdles to high coverage include the need for trained medical personnel and a cold chain, waste of vaccine in multidose vials and risks associated with needle use and disposal.
View Article and Find Full Text PDFPurpose: To quantify distribution of albuterol aerosol generated by a pneumatic nebulizer within the nose and lungs of a model of a 9-month-old child (SAINT) and aerosol loss to the environment, during simulated breathing at increasing tidal volumes (TVs).
Methods: (99m)technetium-labeled albuterol aerosol was generated by an IPI nebulizer with face-mask. Deposition was quantified as a percentage of emitted dose using gamma scintigraphy.