Background: The shortage of nursing and healthcare clinical placements has prompted the investigation of ways to supplement authentic learning. Mobile mixed reality has become increasingly available, however, the affordances and design principles for the facilitation of critical thinking are yet to be explored.
Objective: To examine how mobile mixed reality facilitates critical thinking in nursing and healthcare higher education.
Whilst clinical simulation is established as an effective education tool within the healthcare community, the inability to offer authentic educational learning environments remains problematic. Advances in technology such as immersive virtual reality offer new opportunities to enhance traditional practice to an extent that may transform learning. However, with traditional clinical simulation stress and anxiety can both hinder performance and learning, yet it is unknown what nuances are applicable within a clinical virtual simulation environment.
View Article and Find Full Text PDFBrainstem catecholaminergic neurons play key roles in the autonomic, neuroendocrine, and behavioral responses to glucoprivation, yet the functions of the individual groups are not fully understood. Adrenergic C3 neurons project widely throughout the brain, including densely to sympathetic preganglionic neurons in the spinal cord, yet their function is completely unknown. Here we demonstrate in rats that optogenetic stimulation of C3 neurons induces sympathoexcitatory, cardiovasomotor functions.
View Article and Find Full Text PDFC3 neurons constitute one of three known adrenergic nuclei in the rat central nervous system (CNS). While the adrenergic C1 cell group has been extensively characterized both physiologically and anatomically, the C3 nucleus has remained relatively obscure. This study employed a lentiviral tracing technique that expresses green fluorescent protein behind a promoter selective to noradrenergic and adrenergic neurons.
View Article and Find Full Text PDFThe current studies investigated the in vitro and in vivo effect of adenosine 2A receptor (A(2A)R) agonists to attenuate allogenic immune activation. We performed MLRs with spleen T lymphocytes and APCs isolated from wild-type and A(2A)R knockout mice of both C57BL/6 and BALB/c background strains. Two-way MLR-stimulated T cell proliferation was reduced by ATL313, a selective A(2A)R agonist in a dose-responsive manner (approximately 70%; 10 nM), an effect reversed by the A(2A)R antagonist ZM241385 (100 nM).
View Article and Find Full Text PDFInitially recognized for their importance in control of appetite, orexins (also called hypocretins) are neuropeptides that are also involved in regulating sleep, arousal, and cardiovascular function. Loss of orexin appears to be the primary cause of narcolepsy. Cells expressing the orexins are restricted to a discrete region of the hypothalamus, but their terminal projections are widely distributed throughout the brain.
View Article and Find Full Text PDFThe baroreflex pathway might include a glutamatergic connection between the nucleus of the solitary tract (NTS) and a segment of the ventrolateral medulla (VLM) called the caudal ventrolateral medulla. The main goal of this study was to seek direct evidence for such a connection. Awake rats were subjected to phenylephrine- (PE-) induced hypertension (N=5) or received saline (N=5).
View Article and Find Full Text PDFThe pre-Bötzinger complex (pre-BötC) is a physiologically defined group of ventrolateral medullary neurons that plays a central role in respiratory rhythm generation. These cells are located in a portion of the rostral ventrolateral medulla (RVLM) that is difficult to identify precisely for lack of a specific marker. We sought to determine whether somatostatin (SST) might be a marker for this region.
View Article and Find Full Text PDFMany of the inspiratory augmenting (I-AUG) neurons of the rostral ventral respiratory group (rVRG) are premotor neurons that excite phrenic motor neurons during inspiration, probably by releasing glutamate. In the present study, we demonstrate that these neurons are indeed glutamatergic, in that their cell bodies contain vesicular glutamate transporter-2 (VGLUT2) mRNA and spinal terminals from neurons in the region of the rVRG contain VGLUT2 protein. We also demonstrate by using parallel in situ hybridization and immunocytochemical evidence that most rVRG inspiratory premotor neurons are enkephalinergic.
View Article and Find Full Text PDFAccording to a recent theory (Gray et al., 1999) the neurokinin-1 receptor (NK1R)-immunoreactive (ir) neurons of the ventral respiratory group (VRG) are confined to the pre-Bötzinger complex (pre-BötC) and might be glutamatergic interneurons that drive respiratory rhythmogenesis. In this study we tested whether the NK1R-ir neurons of the VRG are glutamatergic.
View Article and Find Full Text PDFThe main source of excitatory drive to the sympathetic preganglionic neurons that control blood pressure is from neurons located in the rostral ventrolateral medulla (RVLM). This monosynaptic input includes adrenergic (C1), peptidergic, and noncatecholaminergic neurons. Some of the cells in this pathway are suspected to be glutamatergic, but conclusive evidence is lacking.
View Article and Find Full Text PDFThe mouse glutamate vesicular transporter VGLUT2 has recently been characterized. The rat homolog of VGLUT2, differentiation-associated Na(+)/P(i) cotransporter (DNPI), was examined using a digoxigenin-labeled DNPI/VGLUT2 cRNA probe in the present study to determine which, if any, of the various groups of pontine or medullary monoaminergic neurons express DNPI/VGLUT2 mRNA and, thus, are potentially glutamatergic. DNPI/VGLUT2 mRNA was widely distributed within the brainstem and seemed exclusively neuronal.
View Article and Find Full Text PDF