Plasma metabolomics profiling is an emerging methodology to identify metabolic pathways underlying cardiovascular health (CVH). The objective of this study was to define metabolomic profiles underlying CVH in a cohort of Black adults, a population that is understudied but suffers from disparate levels of CVD risk factors. The Morehouse-Emory Cardiovascular (MECA) Center for Health Equity study cohort consisted of 375 Black adults (age 53 ± 10, 39% male) without known CVD.
View Article and Find Full Text PDFPurpose Of Review: MicroRNAs (miRNAs)-short, non-coding RNAs-play important roles in almost all aspects of cardiovascular biology, and changes in intracellular miRNA expression are indicative of cardiovascular disease development and progression. Extracellular miRNAs, which are easily measured in blood and can be reflective of changes in intracellular miRNA levels, have emerged as potential non-invasive biomarkers for disease. This review summarizes current knowledge regarding miRNAs as biomarkers for assessing cardiovascular disease risk and prognosis.
View Article and Find Full Text PDFJACC Basic Transl Sci
March 2023
Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has demonstrated the need to share data and biospecimens broadly to optimize clinical outcomes for US military Veterans.
Methods: In response, the Veterans Health Administration established VA SHIELD (Science and Health Initiative to Combat Infectious and Emerging Life-threatening Diseases), a comprehensive biorepository of specimens and clinical data from affected Veterans to advance research and public health surveillance and to improve diagnostic and therapeutic capabilities.
Results: VA SHIELD now comprises 12 sites collecting de-identified biospecimens from US Veterans affected by SARS-CoV-2.
Arterial stiffness is a precursor for the development of hypertension and premature cardiovascular disease (CVD). Physical activity has been associated with lower arterial stiffness among largely White populations, but the types of activity required and whether these findings apply to Black adults remain unknown. We examined whether physical activity levels were associated with arterial stiffness among Black adults in two independent cohorts.
View Article and Find Full Text PDFCirc Cardiovasc Qual Outcomes
September 2021
Background: Early trauma (general, emotional, physical, and sexual abuse before age 18 years) has been associated with both cardiovascular disease risk and lifestyle-related risk factors for cardiovascular disease, including smoking, obesity, and physical inactivity. Despite higher prevalence, the association between early trauma and cardiovascular health (CVH) has been understudied in Black Americans, especially those from low-income backgrounds, who may be doubly vulnerable. Therefore, we investigated the association between early trauma and CVH, particularly among low-income Black Americans.
View Article and Find Full Text PDFObjectives: Coronavirus disease 2019 is associated with high mortality rates and multiple organ damage. There is increasing evidence that these patients are at risk for various cardiovascular insults; however, there are currently no guidelines for the diagnosis and management of such cardiovascular complications in patients with coronavirus disease 2019. We share data and recommendations from a multidisciplinary team to highlight our institution's clinical experiences and guidelines for managing cardiovascular complications of coronavirus disease 2019.
View Article and Find Full Text PDFPurpose: Neighborhood environment is increasingly recognized as an important determinant of cardiovascular health (CVH) among Black adults. Most research to date has focused on negative aspects of the neighborhood environment, with little attention being paid to the specific positive features, in particular the social environment, that promote cardiovascular resilience among Black adults.We examined whether better neighborhood physical and social characteristics are associated with ideal CVH among Black adults, as measured by Life's Simple 7 (LS7) scores.
View Article and Find Full Text PDFBackground: Despite well-documented cardiovascular disparities between racial groups, within-race determinants of cardiovascular health among Black adults remain understudied. Factors promoting cardiovascular resilience among Black adults in particular warrant further investigation. Our objective was to examine whether individual psychosocial resilience and neighborhood-level cardiovascular resilience were associated with better cardiovascular health in Black adults, measured utilizing Life's Simple 7 (LS7) scores.
View Article and Find Full Text PDFBackground Cardiovascular disease incidence, prevalence, morbidity, and mortality have declined in the past several decades; however, disparities persist among subsets of the population. Notably, blacks have not experienced the same improvements on the whole as whites. Furthermore, frequent reports of relatively poorer health statistics among the black population have led to a broad assumption that black race reliably predicts relatively poorer health outcomes.
View Article and Find Full Text PDFJACC Clin Electrophysiol
February 2020
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease.
View Article and Find Full Text PDFBackground: Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine.
View Article and Find Full Text PDFExtracellular miRNAs are detectable in biofluids and represent a novel class of disease biomarker. Although many studies have utilized archived plasma for miRNA biomarker discovery, the effects of processing and storage have not been rigorously studied. Previous reports have suggested plasma samples are commonly contaminated by platelets, significantly confounding the measurement of extracellular miRNA, which was thought to be easily addressed by additional post-thaw plasma processing.
View Article and Find Full Text PDFExtracellular, membrane vesicles (microvesicles, exosomes) are secreted by cells and may serve as mediators of intercellular communication. Methods for detecting them by flow cytometry have included the use of agents that fluorescently stain vesicle membrane, or fluorescent antibodies that target specific cell-of-origin antigens. However, these methods may falsely detect cell debris or require prior cell-of-origin knowledge.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a progressive and often fatal disorder whose pathogenesis involves pulmonary artery smooth muscle cell (PASMC) proliferation. Although modern PH therapies have significantly improved survival, continued progress rests on the discovery of novel therapies and molecular targets. MicroRNA (miR)-21 has emerged as an important non-coding RNA that contributes to PH pathogenesis by enhancing vascular cell proliferation, however little is known about available therapies that modulate its expression.
View Article and Find Full Text PDFEndothelin-1 (ET-1) plays a critical role in endothelial dysfunction and contributes to the pathogenesis of pulmonary hypertension (PH). We hypothesized that peroxisome proliferator-activated receptor γ (PPARγ) stimulates microRNAs that inhibit ET-1 and pulmonary artery endothelial cell (PAEC) proliferation. The objective of this study was to clarify molecular mechanisms by which PPARγ regulates ET-1 expression in vitro and in vivo.
View Article and Find Full Text PDFRationale: Myocardial infarction is a leading cause of death in developed nations, and there remains a need for cardiac therapeutic systems that mitigate tissue damage. Cardiac progenitor cells (CPCs) and other stem cell types are attractive candidates for treatment of myocardial infarction; however, the benefit of these cells may be as a result of paracrine effects.
Objective: We tested the hypothesis that CPCs secrete proregenerative exosomes in response to hypoxic conditions.
MicroRNAs (miRNAs) encapsulated within microparticles (MPs) are likely to have a role in cell-to-cell signaling in a variety of diseases, including atherosclerosis. However, little is known about the mechanisms by which different cell types release and transfer miRNAs. Here, we examined TNF-α-induced release of MP-encapsulated miR-126, miR-21, and miR-155 from human aortic endothelial cells (ECs) and their transfer to recipient cells.
View Article and Find Full Text PDFAtherosclerosis, the leading cause of morbidity and mortality in developed nations, is a chronic inflammatory disease of arteries. In large and medium-sized vessels, the atherosclerotic burden is focal and non-random, despite the systemic nature of risk factors. This observation has prompted numerous studies over the past two decades that have evaluated the relationship between blood flow, endothelial function and plaque localization.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2014
Previously, we identified a microRNA (miRNA) signature for endothelial cells (ECs) subjected to unidirectional shear stress (USS). MiR-155, a multifunctional miRNA that has been implicated in atherosclerosis, was among the shear stress-responsive miRNAs. Here, we examined the role of miR-155 in modulating EC phenotype and function.
View Article and Find Full Text PDFSkeletal muscle atrophy is prevalent in chronic diseases, and microRNAs (miRs) may play a key role in the wasting process. miR-23a was previously shown to inhibit the expression of atrogin-1 and muscle RING-finger protein-1 (MuRF1) in muscle. It also was reported to be regulated by cytoplasmic nuclear factor of activated T cells 3 (NFATc3) in cardiomyocytes.
View Article and Find Full Text PDF