Publications by authors named "Charles Schumpert"

Macromolecular damage leading to cell, tissue and ultimately organ dysfunction is a major contributor to aging. Intracellular reactive oxygen species (ROS) resulting from normal metabolism cause most damage to macromolecules and the mitochondria play a central role in this process as they are the principle source of ROS. The relationship between naturally occurring variations in the mitochondrial (MT) genomes leading to correspondingly less or more ROS and macromolecular damage that changes the rate of aging associated organismal decline remains relatively unexplored.

View Article and Find Full Text PDF

The ability to appropriately respond to proteotoxic stimuli is a major determinant of longevity and involves induction of various heat shock response (HSR) genes, which are essential to cope with cellular and organismal insults throughout lifespan. The activity of NAD+-dependent deacetylase Sir2, originally discovered in yeast, is known to be essential for effective HSR and longevity. Our previous work on HSR inDaphnia pulicaria indicated a drastic reduction of the HSR in older organisms.

View Article and Find Full Text PDF

Background: RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Daphnia, a freshwater microcrustacean, is an emerging model organism for studying cellular and molecular processes involved in aging, development, and ecotoxicology especially in the context of environmental variation. However, in spite of the availability of a fully sequenced genome of Daphnia pulex, meaningful mechanistic studies have been hampered by a lack of molecular techniques to alter gene expression.

View Article and Find Full Text PDF

Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event.

View Article and Find Full Text PDF

The longevity of an organism is directly related to its ability to effectively cope with cellular stress. Heat shock response (HSR) protects the cells against accumulation of damaged proteins after exposure to elevated temperatures and also in aging cells. To understand the role of Hsp70 in regulating life span of Daphnia, we examined the expression of Hsp70 in two ecotypes that exhibit strikingly different life spans.

View Article and Find Full Text PDF