Introduction: Phenolic compounds garner interest in developing medicines, nutraceuticals, and cosmeceuticals based on natural products. The quantity of phenolic compounds in a sample is commonly determined via spectrophotometry; however, this instrumented technique is relatively laborious and time consuming and requires a large amount of reagents.
Objective: This work aimed to develop a simple, point-of-need colorimetric sensor to rapidly determine total phenolic content (TPC) in tea extracts.
The COVID-19 pandemic highlighted the need for rapid and sensitive diagnostic tools. In this work, the Magnetophoretic Slider Assay (MeSA) was integrated with electrochemical detection (eMeSA) using screen-printed carbon electrodes for the first time for the detection of SARS-CoV-2 nucleocapsid protein (NP). A sandwich enzyme-linked immunosorbent assay (ELISA) was performed on streptavidin-labeled magnetic beads (MBs).
View Article and Find Full Text PDFMost insects were dead when they were named by taxonomists, and predominantly morphological criteria have been used for more than two centuries. But in nature there are populations with individuals looking identical, that turn out to represent two or more different species, and others that look different but are single biological species. Coastal and several continental populations of the green lacewing Chrysoperla mediterranea (Hölzel 1972) had been considered to be one species, based on identical precopulatory "song patterns" (Henry et al.
View Article and Find Full Text PDFThe utility of employing solid-state NMR (SSNMR) to assess parameters governing the stability of a lyophilized IgG2 protein was the focus of the present work. Specifically, the interaction between the sugar stabilizer (sucrose) and protein component was measured using SSNMR and compared to physical and chemical stability data obtained from thermally stressed samples. H T and H T relaxation times were measured by SSMNR for 5 different formulation conditions, and the resultant values were used to examine local mobility and phase separation, respectively.
View Article and Find Full Text PDFPesticides are primarily used in agriculture to protect crops and extend their longevity. However, pesticide exposure has been linked to various acute and chronic health effects, raising significant environmental concerns. Current detection methods are often expensive and time-consuming, relying on complex instruments.
View Article and Find Full Text PDFWidespread concern over surface water pollution has led to interest in developing easy-to-use accurate tools for citizen-based measurements that provide high spatial and temporal resolution while maintaining accuracy. Excessive anthropogenic phosphate significantly contributes to global eutrophication and necessitates regular on-site phosphate monitoring in surface waters. Traditional instrumentation for quantifying phosphate is labor-intensive, expensive, and performed in laboratories.
View Article and Find Full Text PDFHeavy metal contamination is an increasing global threat to human and environmental health, particularly in resource-limited areas. Traditional platforms for heavy metal detection are labor intensive and expensive and require lab facilities. While paper-based colorimetric sensors offer a simpler approach, their sensitivity limitations prevent them from meeting legislative requirements for many metals.
View Article and Find Full Text PDFThe similar transmission patterns and early symptoms of respiratory viral infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza (H1N1), and respiratory syncytial virus (RSV), pose substantial challenges in the diagnosis, therapeutic management, and handling of these infectious diseases. Multiplexed point-of-care testing for detection is urgently needed for prompt and efficient disease management. Here, we introduce an electrochemical paper-based analytical device (ePAD) platform for multiplexed and label-free detection of SARS-CoV-2, H1N1, and RSV infection using immobilized pyrrolidinyl peptide nucleic acid probes.
View Article and Find Full Text PDFIntegrating pH sensor with controlled antibiotic release is fabricated on silk to create a theranostic wound dressing. Alginate (ALG) hydrogel and graphene oxide (GO) loaded with levofloxacin (LVX) and a pH indicator are applied to fabricate a pH-responsive theranostic wound dressing. The modified silk color changes from yellow to green in response to elevated skin pH, indicating the skin infection.
View Article and Find Full Text PDFThere have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation.
View Article and Find Full Text PDFLaser-induced graphene (LIG) electrodes have become popular for electrochemical sensor fabrication due to their simplicity for batch production without the use of reagents. The high surface area and favorable electrocatalytic properties also enable the design of small electrochemical devices while retaining the desired electrochemical performance. In this work, we systematically investigated the effect of LIG working electrode size, from 0.
View Article and Find Full Text PDFIron deficiency anemia (IDA) is a condition characterized by lower-than-average iron (Fe) levels in the body, affecting a substantial number of young children and pregnant women globally. Existing diagnostic methods for IDA rely on invasive analysis of stored Fe in ferritin from blood samples, posing challenges, especially for toddlers and young children. To address this issue, saliva has been proposed as a non-invasive sample matrix for IDA diagnosis.
View Article and Find Full Text PDFMultiplexed analysis in medical diagnostics is widely accepted as a more thorough and complete method compared to single-analyte detection. While analytical methods like polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) exist for multiplexed detection of biomarkers, they remain time-consuming and expensive. Lateral flow assays (LFAs) are an attractive option for point-of-care testing, and examples of multiplexed LFAs exist.
View Article and Find Full Text PDFAn individual's therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time.
View Article and Find Full Text PDFIntegrating electrochemistry into capillary-flow driven immunoassay devices provides unique opportunities for quantitative point-of-care testing. Although custom electrodes can be inexpensive and are tunable, they require skilled fabrication. Here, we report the incorporation of a commercial electrode into a capillary-flow driven immunoassay (iceCaDI) device for a single end-user step sandwich electrochemical enzyme-linked immunosorbent assay (ELISA).
View Article and Find Full Text PDFMicrofluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years.
View Article and Find Full Text PDFSens Actuators B Chem
February 2024
Heart failure (HF) is an emerging epidemic and remains a major clinical and public health problem. Advances in the healthcare management of HF may lead to lower morbidity and mortality rates but require diagnostics to guide the process. Current diagnostics/prognostics approaches rely on expensive equipment, centralized facilities and trained personnel, marginalizing healthcare access in developing countries and rural communities.
View Article and Find Full Text PDFCu(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC), also known as click chemistry, has been demonstrated to be highly robust while providing versatile surface chemistry. One specific application is biosensor fabrication. Recently, we developed thermoplastic electrodes (TPEs) as an alternative to traditional carbon composite electrodes in terms of cost, performance, and robustness.
View Article and Find Full Text PDFJ Electrochem Soc
September 2023
Thermoplastic carbon electrodes (TPEs) are an alternative form of carbon composite electrodes that have shown excellent electrochemical performance with applications in biological sensing. However, little has been done to apply TPEs to environmental sensing, specifically heavy metal analysis. The work here focuses on lead analysis and based on their electrochemical properties, TPEs are expected to outperform other carbon composite materials; however, despite testing multiple formulations, TPEs showed inferior performance.
View Article and Find Full Text PDFMicrofluid Nanofluidics
September 2023
Unlabelled: Small, single-layer microfluidic paper-based analytical devices (µPADs) offer potential for a range of point-of-care applications; however, they have been limited to low flow rates. Here, we investigate the role of laser cutting paper channels in maximizing flow rate in small profile devices with limited fluid volumes. We demonstrate that branching, laser-cut grooves can provide a 59.
View Article and Find Full Text PDFTo protect the body from external pathogens, the intestines have sophisticated epithelial and mucosal barriers. Disruptions to barrier integrity are associated with a variety of disorders such as irritable bowel disease, Crohn's disease, and celiac disease. One critical component of all barriers are collagens in the extracellular matrix.
View Article and Find Full Text PDFOver the last few years, the SARS-CoV-2 pandemic has made the need for rapid, affordable diagnostics more compelling than ever. While traditional laboratory diagnostics like PCR and well-plate ELISA are sensitive and specific, they can be costly and take hours to complete. Diagnostic tests that can be used at the point-of-care or at home, like lateral flow assays (LFAs) are a simple, rapid alternative, but many commercially available LFAs have been criticized for their lack of sensitivity compared to laboratory methods like well-plate ELISAs.
View Article and Find Full Text PDFThe field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition.
View Article and Find Full Text PDFThis work focuses on a systematic method to produce Ag, Cu, and Ag/Cu metallic nanoparticles (MNPs) in situ assisted with ultrasound on cellulose paper. By tuning the concentration of AgNO and CuSO salt precursors and ultrasound time, combined with a fixed concentration of ascorbic acid (AA) as a reducing agent, it was possible to control the size, morphology, and polydispersity of the resulting MNPs on cellulose papers. Notably, high yield and low polydispersity of MNPs and bimetallic nanoparticles are achieved by increasing the sonication time on paper samples pre-treated with salt precursors before reduction with AA.
View Article and Find Full Text PDF