The combination of a Ti-salen complex with AgBArF reveals unique hard/soft heterobimetallic cooperativity in lactide ring-opening polymerisation (ROP), enabling significant activity at room temperature. Reactivity, mechanistic and computational studies highlight the role of cation-π interactions in the formation of heterobimetallic species and provide key insights into the role of both metals in ROP.
View Article and Find Full Text PDFThere is an increasing focus on the part of academic institutions, funding agencies, and publishers, if not researchers themselves, on preservation and sharing of research data. Motivations for sharing include research integrity, replicability, and reuse. One of the barriers to publishing data is the extra work involved in preparing data for publication once a journal article and its supporting information have been completed.
View Article and Find Full Text PDFThe design, synthesis, and conformational analysis of an oligobenzanilide helix mimetic scaffold capable of simultaneous mimicry of two faces of an α-helix is reported. The synthetic methodology provides access to diverse monomer building blocks amenable to solid-phase assembly in just four synthetic steps. The conformational flexibility of model dimers was investigated using a combination of solid and solution state methodologies supplemented with DFT calculations.
View Article and Find Full Text PDFTwo new di-zinc-aryl complexes, [LZn Ph ] and [LZn (C F ) ], coordinated by a diphenol tetraamine macrocyclic ligand have been prepared and fully characterised, including by single-crystal X-ray diffraction experiments. The complexes' reactivities with monomers including carbon dioxide, cyclohexene oxide, phthalic anhydride, isopropanol and phenol were investigated using both experimental studies and density functional theory calculations. In particular, [LZn Ph ] readily inserts carbon dioxide to form a carboxylate, at 1 bar pressure, whereas [LZn (C F ) ] does not react.
View Article and Find Full Text PDFRenewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials.
View Article and Find Full Text PDFUnderstanding how to moderate and improve catalytic activity is critical to improving degradable polymer production. Here, di- and monozinc catalysts, coordinated by bis(imino)diphenylamido ligands, show remarkable activities and allow determination of the factors controlling performance. In most cases, the dizinc catalysts significantly out-perform the monozinc analogs.
View Article and Find Full Text PDFControlling polymer composition starting from mixtures of monomers is an important, but rarely achieved, target. Here a single switchable catalyst for both ring-opening polymerization (ROP) of lactones and ring-opening copolymerization (ROCOP) of epoxides, anhydrides, and CO2 is investigated, using both experimental and theoretical methods. Different combinations of four model monomers-ε-caprolactone, cyclohexene oxide, phthalic anhydride, and carbon dioxide-are investigated using a single dizinc catalyst.
View Article and Find Full Text PDFThe synthesis of three new dizinc(II) complexes bearing a macrocyclic [2 + 2] Schiff base ligand is reported. The bis(anilido)tetraimine macrocycle reacts with diethylzinc to form a bis(ethyl)dizinc(II) complex, [L(Et)Zn2Et2] (1). The reaction of complex 1 with isopropyl alcohol is reported, forming a bis(isopropyl alkoxide)dizinc complex, [L(Et)Zn2((i)PrO)2] (2).
View Article and Find Full Text PDFSelective catalysis is used to prepare block copolyesters by combining ring-opening polymerization of lactones and ring-opening copolymerization of epoxides/anhydrides. By using a dizinc complex with mixtures of up to three different monomers and controlling the chemistry of the Zn-O(polymer chain) it is possible to select for a particular polymerization route and thereby control the composition of block copolyesters.
View Article and Find Full Text PDFControlled routes to prepare polyesters and polycarbonates are of interest due to the widespread application of these materials and the opportunities provided to prepare new copolymers. Furthermore, ring-opening copolymerization may enable new poly(ester-carbonate) materials to be prepared which are inaccessible using alternative polymerizations. This review highlights recent advances in the ring-opening copolymerization catalysis, using epoxides coupled with anhydrides or CO2, to produce polyesters and polycarbonates.
View Article and Find Full Text PDFRobust and air-stable homoleptic group 4 complexes of the type M(L)2 [1-3; M = Ti, Zr, Hf; L = dianionic bis(aryloxide) N-heterocyclic carbene (NHC) ligand] were readily synthesized from the NHC proligand 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)imidazolinium chloride (H3L,Cl) and appropriate group 4 precursors. As deduced from cyclic voltammetry studies, the homoleptic bis-adduct zirconium and hafnium complexes 2 and 3 can also be oxidized, with up to four one-electron-oxidation signals for the zirconium derivative 2 (three reversible signals). Electron paramagnetic resonance data for the one-electron oxidation of complexes 1-3 agree with the formation of ligand-centered species.
View Article and Find Full Text PDFZinc alkyl cations supported by N,N-BIAN-type bidentate ligands were found to be highly active in the immortal ROP of ε-caprolactone to yield narrowly disperse and chain length-controlled poly(ε-caprolactone), whether in solution or bulk polymerization conditions.
View Article and Find Full Text PDFA readily accessible and robust Zr-NHC complex was found to polymerize rac-lactide in a highly controlled, living and stereoselective manner to afford heterotactic PLA.
View Article and Find Full Text PDF