Publications by authors named "Charles Robin"

Article Synopsis
  • Ecdysteroids are critical hormones in insects that influence various biological processes, but their breakdown mechanisms are not well understood, with only a few related genes identified so far.
  • The study investigates two ecdysteroid kinase-like genes (Wall and pkm) in fruit flies to determine their roles, revealing that these genes are not crucial for development or reproduction but may have other functions.
  • Misexpression of the Wall gene leads to severe developmental issues, suggesting it may interact with a yet-to-be-identified ecdysteroid involved in Drosophila development, shedding light on unexplored areas of insect hormone regulation.
View Article and Find Full Text PDF
Article Synopsis
  • A research initiative aimed at creating genetically engineered Brassicas (like cabbage and canola) with modified Cry1B and Cry1C genes was launched to benefit Indian and Australian farmers by minimizing licensing costs and enhancing plant activity.
  • Experimental transgenic Arabidopsis thaliana plants showed high expression levels of these genes, with protein accumulation of Cry1C ranging significantly, but no correlation between type of promoter used and expression levels was found.
  • The modified Cry1B/Cry1C genes proved highly effective against Diamondback moth larvae, achieving 100% mortality, indicating their potential for developing insect-resistant genetically modified (GM) crops.
View Article and Find Full Text PDF

Background: One of the proposed applications of gene drives has been to revert pesticide resistant mutations back to the ancestral susceptible state. Insecticides that have become ineffective because of the rise of resistance could have reinvigorated utility and be used to suppress pest populations again, perhaps at lower application doses.

Results: We have created a laboratory model for susceptibility gene drives that replaces field-selected resistant variants of the acetylcholine esterase (Ace) locus of Drosophila melanogaster with ancestral susceptible variants.

View Article and Find Full Text PDF

A synthetic gene drive that targets haplolethal genes on the X chromosome can skew the sex ratio toward males. Like an "X-shredder," it does not involve "homing," and that has advantages including the reduction of gene drive resistance allele formation. We examine this "X-poisoning" strategy by targeting 4 of the 11 known X-linked haplolethal/haplosterile genes of Drosophila melanogaster with CRISPR/Cas9.

View Article and Find Full Text PDF

The evolutionary dynamics of large gene families can offer important insights into the functions of their individual members. While the ecdysteroid kinase-like (EcKL) gene family has previously been linked to the metabolism of both steroid molting hormones and xenobiotic toxins, the functions of nearly all EcKL genes are unknown, and there is little information on their evolution across all insects. Here, we perform comprehensive phylogenetic analyses on a manually annotated set of EcKL genes from 140 insect genomes, revealing the gene family is comprised of at least 13 subfamilies that differ in retention and stability.

View Article and Find Full Text PDF

Ecdysteroids, typified by 20-hydroxyecdysone (20E), are essential hormones for the development, reproduction and physiology of insects and other arthropods. For over half a century, the vinegar fly Drosophila melanogaster (Ephydroidea: Diptera) has been used as a model of ecdysteroid biology. Many aspects of the biosynthesis and regulation of ecdysteroids in this species are understood at the molecular level, particularly with respect to their secretion from the prothoracic gland (PG) cells of the ring gland, widely considered the dominant biosynthetic tissue during development.

View Article and Find Full Text PDF

A unique aspect of metabolic detoxification in insects compared to other animals is the presence of xenobiotic phosphorylation, about which little is currently understood. Our previous work raised the hypothesis that members of the taxonomically restricted ecdysteroid kinase-like (EcKL) gene family encode the enzymes responsible for xenobiotic phosphorylation in the model insect (Diptera: Ephydroidea)-however, candidate detoxification genes identified in the EcKL family have yet to be functionally validated. Here, we test the hypothesis that EcKL genes in the rapidly evolving Dro5 clade are involved in the detoxification of plant and fungal toxins in .

View Article and Find Full Text PDF
Article Synopsis
  • - Large-scale use of insecticides is harming beneficial insect populations, prompting the search for safer alternatives like spinosad, which is thought to be less toxic to beneficial insects.
  • - Research reveals that low doses of spinosad interfere with a specific receptor (nAChRα6) in the nervous system, causing issues such as enlarged lysosomes and mitochondrial stress, which contribute to harmful effects on insects.
  • - Chronic exposure to low doses of spinosad leads to severe neurodegeneration and blindness in female insects, highlighting the need for deeper research into its negative effects on beneficial species.
View Article and Find Full Text PDF

The cotton bollworm Helicoverpa armigera is a cosmopolitan pest and its diverse habitats plausibly contribute to the formation of diverse lineages. Despite the significant threat it poses to economic crops worldwide, its evolutionary history and genetic basis of local adaptation are poorly understood. In this study, we de novo assembled a high-quality chromosome-level reference genome of H.

View Article and Find Full Text PDF

Phosphorylation is a phase II detoxification reaction that, among animals, occurs near exclusively in insects, but the enzymes responsible have never been cloned or otherwise identified. We propose the hypothesis that members of the arthropod-specific ecdysteroid kinase-like (EcKL) gene family encode detoxicative kinases. To test this hypothesis, we annotated the EcKL gene family in 12 species of Drosophila and explored their evolution within the genus.

View Article and Find Full Text PDF

Pesticides are now chronically found in numerous ecosystems incurring widespread toxic effects on multiple organisms. For insects, the larvae are very exposed to pesticide pollution and the acute effect of insecticides on larvae has been characterized in a range of species. However, the carry-on effects in adults of sublethal exposure occurring in larvae are not well characterized.

View Article and Find Full Text PDF

Myzus persicae is a major pest of many crops including canola and Brassica vegetables, partly because it vectors plant viruses. Previously it has been reported that double-stranded RNA delivered to aphids by injection, artificial diet or transgenic plants has knocked down target genes and caused phenotypic effects. While these studies suggest that RNA interference (RNAi) might be used to suppress aphid populations, none have shown effects sufficient for field control.

View Article and Find Full Text PDF
Article Synopsis
  • To understand insect diversity genomically, we need to study how natural selection changes genetic traits in populations.
  • Genetic association panels can help us link physical traits (phenotypes) to genetic information (genotypes) in a highly detailed way, while also providing samples for population genetics studies.
  • Analyzing these panels can uncover complex interactions between genes and their functions, contributing to our knowledge of how adaptation shapes evolution in insects.
View Article and Find Full Text PDF

Several hundred insect genome assemblies are already publicly available, and this total grows on a weekly basis. A major challenge now confronting insect science is how best to use genomic data to improve our understanding of insect biology. We consider a framework for genome analysis based on functional affiliation, that is, groups of genes involved in the same biological process or pathway, and explore how such an approach furthers our understanding of several aspects of insect phenotype.

View Article and Find Full Text PDF

Insecticide resistance is a paradigm of microevolution, and insecticides are responsible for the strongest cases of recent selection in the genome of Here we use a naïve population and a novel insecticide class to examine the ab initio genetic architecture of a potential selective response. Genome-wide association studies (GWAS) of chlorantraniliprole susceptibility reveal variation in a gene of major effect, (), which we validate with linkage mapping and transgenic manipulation of gene expression. We propose that allelic variation in alters sensitivity to the calcium depletion attributable to chlorantraniliprole's mode of action.

View Article and Find Full Text PDF

The phylogenetic trees of genes and the species which they belong to are similar, but distinct due to various evolutionary processes which affect genes but do not create new species. Reconciliations map the gene tree into the species tree, explaining the discrepancies by events including gene duplications and losses. However, when duplicate genes undergo recombination (a phenomenon known as paralog exchange, or non-allelic homologous recombination), the phylogeny of the genes becomes a network, not a tree.

View Article and Find Full Text PDF

Imidacloprid, the world's most used insecticide, has caused considerable controversy due to harmful effects on non-pest species and increasing evidence showing that insecticides have become the primary selective force in many insect species. The genetic response to insecticides is heterogeneous across populations and environments, leading to more complex patterns of genetic variation than previously thought. This motivated the investigation of imidacloprid resistance at different temperatures in natural populations of Drosophila melanogaster originating from four climate extremes replicated across two continents.

View Article and Find Full Text PDF

Patterns of nucleotide polymorphism within populations of suggest that insecticides have been the selective agents driving the strongest recent bouts of positive selection. However, there is a need to explicitly link selective sweeps to the particular insecticide phenotypes that could plausibly account for the drastic selective responses that are observed in these non-target insects. Here, we screen the Drosophila Genetic Reference Panel with two common insecticides; malathion (an organophosphate) and permethrin (a pyrethroid).

View Article and Find Full Text PDF

The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors.

View Article and Find Full Text PDF

Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in ; however, only the locus has previously been shown to be relevant to field populations.

View Article and Find Full Text PDF

Motivation: Sequencing pools of individuals (Pool-Seq) is a cost-effective way to gain insight into the genetics of complex traits, but as yet no parametric method has been developed to both test for genetic effects and estimate their magnitude. Here, we propose GWAlpha, a flexible method to obtain parametric estimates of genetic effects genome-wide from Pool-Seq experiments.

Results: We showed that GWAlpha powerfully replicates the results of Genome-Wide Association Studies (GWAS) from model organisms.

View Article and Find Full Text PDF

In larvae, the ring gland (RG) is a control center that orchestrates major developmental transitions. It is a composite organ, consisting of the prothoracic gland, the corpus allatum, and the corpora cardiaca, each of which synthesizes and secretes a different hormone. Until now, the RG's broader developmental roles beyond endocrine secretion have not been explored.

View Article and Find Full Text PDF

Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes.

View Article and Find Full Text PDF

We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvogpihb76319a3ahkrld7th1g0ucbkm1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once