Publications by authors named "Charles R Scriver"

Phenylketonuria (PKU) is a genetic inborn error in metabolism that impacts many people globally, with profound individual and societal consequences when left untreated. The journey of phenylalanine ammonia lyase (PAL) from plant enzyme to enzyme substitution therapy for PKU is a fascinating story that illustrates the importance of collaboration between basic scientists and industry in the drug development process. The story begins with the curiosity of plant physiologists about the origin of lignin, a polymer involved in maintaining the rigidity of plants.

View Article and Find Full Text PDF

Prospectively enrolled phenylketonuria patients (n=485) participated in an international Phase II clinical trial to identify the prevalence of a therapeutic response to daily doses of sapropterin dihydrochloride (sapropterin, KUVAN(®)). Responsive patients were then enrolled in two subsequent Phase III clinical trials to examine safety, ability to reduce blood Phenylalanine levels, dosage (5-20 mg/kg/day) and response, and bioavailability of sapropterin. We combined phenotypic findings in the Phase II and III clinical trials to classify study-related responsiveness associated with specific alleles and genotypes identified in the patients.

View Article and Find Full Text PDF

Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype (OMIM 261600), is an inborn error of metabolism causing impaired postnatal cognitive development in the absence of treatment. We used the Pah(enu2/enu2) PKU mouse model to study oral enzyme substitution therapy with various chemically modified formulations of phenylalanine ammonia lyase (Av-p.C503S/p.

View Article and Find Full Text PDF

Phenylalanine hydroxylase deficiency is an autosomal recessive disorder that results in intolerance to the dietary intake of the essential amino acid phenylalanine. It occurs in approximately 1:15,000 individuals. Deficiency of this enzyme produces a spectrum of disorders including classic phenylketonuria, mild phenylketonuria, and mild hyperphenylalaninemia.

View Article and Find Full Text PDF

Phenylalanine ammonia lyase (PAL) has long been recognized as a potential enzyme replacement therapeutic for treatment of phenylketonuria. However, various strategies for the oral delivery of PAL have been complicated by the low intestinal pH, aggressive proteolytic digestion and circulation time in the GI tract. In this work, we report 3 strategies to address these challenges.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is a metabolic disorder, in which loss of phenylalanine hydroxylase activity results in neurotoxic levels of phenylalanine. We used the Pah(enu2/enu2) PKU mouse model in short- and long-term studies of enzyme substitution therapy with PEGylated phenylalanine ammonia lyase (PEG-PAL conjugates) from 4 different species. The most therapeutically effective PAL (Av, Anabaena variabilis) species was one without the highest specific activity, but with the highest stability; indicating the importance of protein stability in the development of effective protein therapeutics.

View Article and Find Full Text PDF

Garrod presented his concept of 'the inborn error of metabolism' in the 1908 Croonian Lectures to the Royal College of Physicians (London); he used albinism, alkaptonuria, cystinuria and pentosuria to illustrate. His lectures are perceived today as landmarks in the history of biochemistry, genetics and medicine. Garrod gave evidence for the dynamic nature of metabolism by showing involvement of normal metabolites in normal pathways made variant by Mendelian inheritance.

View Article and Find Full Text PDF

We report here the results of treatment in a panel of 65 inborn errors of metabolism, obtained in the 25th year of a longitudinal project, first reported in 1983. The phenotypic impact of these 65 diseases was scored before and after treatment using a consistent set of parameters, which we have retained to measure change in clinical phenotype throughout the project. We observed significant improvements in the response to treatment for the disease set as a whole.

View Article and Find Full Text PDF
Article Synopsis
  • Recent work on a metabolic disorder treatment using phenylalanine ammonia lyase (PAL) from two sources showed success in a mouse model, but improvements were needed.
  • Modifications made to the A. variabilis PAL by changing cysteine residues to serines reduced aggregation issues, and structural analysis revealed new insights into the enzyme's active site.
  • The A. variabilis C503S/C565S variant demonstrated better thermal stability and protease resistance compared to R. toruloides PAL, pointing to potential enhanced interactions that stabilize the enzyme's structure.
View Article and Find Full Text PDF

Protein and peptide therapeutics are of growing importance as medical treatments but can frequently induce an immune response. This work describes the combination of complementary approaches to map the potential immunogenic regions of the yeast Rhodosporidium toruloides phenylalanine ammonia-lyase (PAL, EC 4.3.

View Article and Find Full Text PDF

We describe a sensitive, simple and convenient stable isotope dilution assay developed to study endogenous metabolism of administered stable isotope-labeled phenylalanine (Phe) in phenylketonuric (PKU) mice treated experimentally with phenylalanine ammonia lyase (PAL). Mouse urine and plasma containing endogenous and administered labeled Phe together with internal standard Phe bearing a different pattern of labeling are converted by in situ diazotization to 2-chloro-3-phenylpropionic acid (CPP). A single solvent extraction is then used to isolate the isotopomers of CPP along with the trans-cinnamic acid (TCA) produced from Phe by PAL, as well as the TCA metabolites benzoic and hippuric acids.

View Article and Find Full Text PDF

"Inborn errors of metabolism," first recognized 100 years ago by Garrod, were seen as transforming evidence for chemical and biological individuality. Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype, was identified in 1934 by Asbjörn Fölling. It is a disease with impaired postnatal cognitive development resulting from a neurotoxic effect of hyperphenylalaninemia (HPA).

View Article and Find Full Text PDF

Lists of variations in genomic DNA and their effects have been kept for some time and have been used in diagnostics and research. Although these lists have been carefully gathered and curated, there has been little standardization and coordination, complicating their use. Given the myriad possible variations in the estimated 24,000 genes in the human genome, it would be useful to have standard criteria for databases of variation.

View Article and Find Full Text PDF

Frequency of INherited Disorders database (FINDbase) (http://www.findbase.org) is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide.

View Article and Find Full Text PDF

The Quebec Network of Genetic Medicine (QNGM), implemented in 1971, has been an integrated program of community genetics serving the population (approximately 7.5 million) of Quebec province in Canada. QNGM reported to the Minister of Social Affairs and operated under an umbrella of universal health insurance in the province.

View Article and Find Full Text PDF

Structure-based protein engineering coupled with chemical modifications (e.g., pegylation) is a powerful combination to significantly improve the development of proteins as therapeutic agents.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is a metabolic disorder due primarily to mutations in the PAH gene that impair both phenylalanine hydroxylase activity and disposal of l-phenylalanine from the normal diet. Excess phenylalanine is toxic to cognitive development and a low-phenylalanine diet prevents mental retardation, but it is a difficult therapeutic option. Previous studies with recombinant phenylalanine ammonia-lyase, PAL, demonstrated pharmacologic and physiologic proofs of principle for PAL as an alternative therapy for PKU but its immunogenicity was problematic.

View Article and Find Full Text PDF

Phenylketonuria patients harboring a subset of phenylalanine hydroxylase (PAH) mutations have recently shown normalization of blood phenylalanine levels upon oral administration of the PAH cofactor tetrahydrobiopterin [(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4)]. Several hypotheses have been put forward to explain BH4 responsiveness, but the molecular basis for the corrective effect(s) of BH4 has not been understood. We have investigated the biochemical, kinetic, and structural changes associated with BH4-responsive mutations (F39L, I65T, R68S, H170D, E178G, V190A, R261Q, A300S, L308F, A313T, A373T, V388M, E390G, P407S, and Y414C).

View Article and Find Full Text PDF

The R408W phenylketonuria mutation in Europe has arisen by recurrent mutation in the human phenylalanine hydroxylase (PAH) locus and is associated with two major PAH haplotypes. R408W-2.3 exhibits a west-to-east cline of relative frequency reaching its maximum in the Balto-Slavic region, while R408W-1.

View Article and Find Full Text PDF