The influence of carbon black (CB) structure and surface area on key rubber properties such as monotonic stress-strain, cyclic stress-strain, and dynamic mechanical behaviors are investigated in this paper. Natural rubber compounds containing eight different CBs were examined at equivalent particulate volume fractions. The CBs varied in their surface area and structure properties according to a wide experimental design space, allowing robust correlations to the experimental data sets to be extracted.
View Article and Find Full Text PDFUndispersed filler agglomerates or other substantial inclusions/contaminants in rubber can act as large crack precursors that reduce the strength and fatigue lifetime of the material. To demonstrate this, we use tensile strength (stress at break, σ) data from 50 specimens to characterize the failure distribution behavior of carbon black (CB) reinforced styrene-butadiene rubber (SBR) compounds. Poor mixing was simulated by adding a portion of the CB late in the mixing process, and glass beads (microspheres) with 517 μm average diameter were introduced during milling to reproduce the effects of large inclusions.
View Article and Find Full Text PDF