Publications by authors named "Charles P Blakemore"

Optically levitated macroscopic objects are a powerful tool in the field of force sensing, owing to high sensitivity, absolute force calibration, environmental isolation, and the advanced degree of control over their dynamics that have been achieved. However, limitations arise from the spurious forces caused by electrical polarization effects that, even for nominally neutral objects, affect the force sensing because of the interaction of dipole moments with gradients of external electric fields. Here, we introduce a technique to measure, model, and eliminate dipole moment interactions, limiting the performance of sensors using levitated objects.

View Article and Find Full Text PDF

A high sensitivity force sensor based on dielectric microspheres in vacuum, optically trapped by a single, upward-propagating laser beam, is described. Off-axis parabolic mirrors are used both to focus the 1064 nm trapping beam and to recollimate it to provide information on the horizontal position of the microsphere. The vertical degree of freedom is readout by forming an interferometer between the light retroreflected by the microsphere and a reference beam, hence eliminating the need for auxiliary beams.

View Article and Find Full Text PDF

We present the results of a search for unknown interactions that couple to mass between an optically levitated microsphere and a gold-coated silicon cantilever. The scale and geometry of the apparatus enable a search for new forces that appear at distances below 100  μm and which would have evaded previous searches due to screening mechanisms. The data are consistent with electrostatic backgrounds and place upper limits on the strength of new interactions at <0.

View Article and Find Full Text PDF

Translocation measurements of intact DNA strands with the ion channel α-hemolysin (α-HL) are limited to single-stranded DNA (ssDNA) experiments as the dimensions of the channel prevent double-stranded DNA (dsDNA) translocation; however, if a short oligodeoxynucleotide is used to interrogate a longer ssDNA strand, it is possible to unzip the duplex region when it is captured in the α-HL vestibule, allowing the longer strand to translocate through the α-HL channel. This unzipping process has a characteristic duration based on the stability of the duplex. Here, ion channel recordings are used to detect the presence and relative location of the oxidized damage site 8-oxo-7,8-dihydroguanine (OG) in a sequence-specific manner.

View Article and Find Full Text PDF