The studies showed the effectiveness of green-synthesized SiONPs in mitigating the toxicity of Arsenic. Density Functional Theory (DFT) is a computational method used to determine electronic structure, energy gap, and toxicity prediction. Experimentally, silicon nanoparticles of 0 (S0) and 100% v/v (S100) were applied to the surface of the soil.
View Article and Find Full Text PDFArsenic (As) is a heavy metal that is toxic to both plants and animals. Silicon nanoparticles (SiNPs) can alleviate the detrimental effects of heavy metals on plants, but the underlying mechanisms remain unclear. The study aims to synthesize SiNPs and reveal how they promote plant health in Arsenic-polluted soil.
View Article and Find Full Text PDFThe use of water as a solvent in chemical reactions has recently been brought to public attention, especially in the exploration of eco-friendly procedures. It is readily available, abundantly accessible, non-toxic, non-flammable, and at a low cost. As opposed to the previous limitation of reactant solubilities associated with aqueous media, a hydrogel such as a hydroxypropyl methylcellulose (HPMC) solution can significantly improve the reactant solubility.
View Article and Find Full Text PDFTo establish an environmentally friendly green chemical process, we minimized and resolved a significant proportion of waste and hazards associated with conventional organic acids and molecular gases, such as carbon monoxide (CO). Herein, we report a facile and milder reaction procedure, using low temperatures/pressures and shorter reaction time for the carboxyl- and carbonylation of diverse arrays of aryl halides over a newly developed cationic Lewis-acid promoted Pd/CoO catalyst. Furthermore, the reaction proceeded in the absence of acid co-catalysts, and anhydrides for CO release.
View Article and Find Full Text PDFA coordination polymer with the composition CHOZn (ZnBTC) (BTC = benzene-1,3,5-tricarboxylate) was synthesized under hydrothermal conditions at 120 °C, and its crystal structure was determined using single-crystal X-ray crystallography. First-principles electronic structure investigation of the compound was carried out using the density functional theory computational approach. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, the energy gap, and the global reactivity descriptors of ZnBTC were investigated in both the gas phase and the solvent phase using the implicit solvation model, while the donor-acceptor interactions were studied using natural bond orbital analyses.
View Article and Find Full Text PDFThe need for green synthesis of emerging industrial materials has led to the biosynthesis of nanoparticles from plants to circumvent the adverse by-products of chemical synthesis. In this study, the leaf extract of Detarium mirocarpum Guill & Perr, a small tree belonging to the family Fabaceae (Legume), was used to synthesize silver nanoparticles (DAgNPs). DAgNPs were characterized using spectroscopic techniques (Ultraviolet-Visible spectroscopy and Fourier Transform Infrared spectroscopy) which showed hydroxyl and carbonyl functional groups to be responsible for their synthesis.
View Article and Find Full Text PDF