Early biomarkers for indication of the complex physiological relevance (CPR) of a three-dimensional (3D) tissue model are needed. CPR is detected late in culture and requires different analytical techniques. Albumin production, CYP3A4 expression, and formation of bile canaliculi structures are commonly used to compare in vitro hepatic cells to their in vivo counterpart.
View Article and Find Full Text PDFNew insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures.
View Article and Find Full Text PDFThe lack of prediction accuracy during drug development and screening risks complications during human trials, such as drug-induced liver injury (DILI), and has led to a demand for robust, human cell-based, in vitro assays for drug discovery. Microporous polymer-based scaffolds offer an alternative to the gold standard flat tissue culture plastic (2D TCPS) and other 3D cell culture platforms as the porous material entraps cells, making it advantageous for automated liquid handlers and high-throughput screening (HTS). In this study, we optimized the surface treatment, pore size, and choice of scaffold material with respect to cellular adhesion, tissue organization, and expression of complex physiologically relevant (CPR) outcomes such as the presence of bile canaliculi-like structures.
View Article and Find Full Text PDF