Kinetoplastid organisms, including Trypanosoma brucei, are a significant health burden in many tropical and semitropical countries. Much of their metabolism is poorly understood. To better study kinetoplastid metabolism, chemical probes that inhibit kinetoplastid enzymes are needed.
View Article and Find Full Text PDFBackground: Double reads in blinded independent central reviews (BICRs) are recommended to control the quality of trials but they are prone to discordances. We analyzed inter-reader discordances in a pool of lung cancer trials using RECIST 1.1.
View Article and Find Full Text PDFThe African trypanosome, Trypanosoma brucei, is the causative agent of human African trypanosomiasis (HAT). African trypanosomes are extracellular parasites that possess a single flagellum that imparts a high degree of motility to the microorganisms. In addition, African trypanosomes show significant metabolic and structural adaptation to environmental conditions.
View Article and Find Full Text PDFThe bloodstream lifecycle stage of the kinetoplastid parasite Trypanosoma brucei relies solely on glucose metabolism for ATP production, which occurs in peroxisome-like organelles (glycosomes). Many studies have been conducted on glucose uptake and metabolism, but none thus far have been able to monitor changes in cellular and organellar glucose concentration in live parasites. We have developed a non-destructive technique for monitoring changes in cytosolic and glycosomal glucose levels in T.
View Article and Find Full Text PDFTrypanosoma brucei, which causes human African typanosomiasis (HAT), derives cellular ATP from glucose metabolism while in the mammalian host. Targeting glucose uptake or regulation in the parasite has been proposed as a potential therapeutic strategy. However, few methods have been described to identify and characterize potential inhibitors of glucose uptake and regulation.
View Article and Find Full Text PDF