An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications.
View Article and Find Full Text PDFMedium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis.
View Article and Find Full Text PDFFlowers of the hop plant provide both bitterness and "hoppy" flavor to beer. Hops are, however, both a water and energy intensive crop and vary considerably in essential oil content, making it challenging to achieve a consistent hoppy taste in beer. Here, we report that brewer's yeast can be engineered to biosynthesize aromatic monoterpene molecules that impart hoppy flavor to beer by incorporating recombinant DNA derived from yeast, mint, and basil.
View Article and Find Full Text PDFShort-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable compounds.
View Article and Find Full Text PDFBackground: With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA.
View Article and Find Full Text PDFThe procedures described here are designed for engineering Saccharomyces cerevisiae to produce sesquiterpenes with an aim to either increase product titers or to simply generate a quantity of product sufficient for identification and/or downstream experimentation. Engineering high-level sesquiterpene production in S. cerevisiae often requires iterations of strain modifications and metabolite analysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2012
Organismal fitness depends on the ability of gene networks to function robustly in the face of environmental and genetic perturbations. Understanding the mechanisms of this stability is one of the key aims of modern systems biology. Dissecting the basis of robustness to mutation has proven a particular challenge, with most experimental models relying on artificial DNA sequence variants engineered in the laboratory.
View Article and Find Full Text PDF