Fluoride-ion batteries have several potential advantages over lithium-ion batteries. Materials development is still needed, however, to realize electrolytes with sufficiently high anion conductivity and compatibility with anode and cathode layers. Fluoride compounds are difficult to synthesize directly as single crystals but can be realized from oxide film precursors via topotactic chemistry techniques.
View Article and Find Full Text PDFOxide heterostructures exhibit a vast variety of unique physical properties. Examples are unconventional superconductivity in layered nickelates and topological polar order in (PbTiO)/(SrTiO) superlattices. Although it is clear that variations in oxygen content are crucial for the electronic correlation phenomena in oxides, it remains a major challenge to quantify their impact.
View Article and Find Full Text PDFThe layered square-planar nickelates, NdNiO, are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in NdNiO thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n = 3 Ruddlesden-Popper compound, NdNiO, and subsequent reduction to the square-planar phase, NdNiO. We synthesize our highest quality NdNiO films under compressive strain on LaAlO (001), while NdNiO on NdGaO (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties.
View Article and Find Full Text PDFSince the discovery of high-temperature superconductivity in copper oxide materials, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials. One prime materials platform has been the rare-earth nickelates and, indeed, superconductivity was recently discovered in the doped compound NdSrNiO (ref. ).
View Article and Find Full Text PDFWe construct ferroelectric (LuFeO_{3})_{m}/(LuFe_{2}O_{4}) superlattices with varying index m to study the effect of confinement on topological defects. We observe a thickness-dependent transition from neutral to charged domain walls and the emergence of fractional vortices. In thin LuFeO_{3} layers, the volume fraction of domain walls grows, lowering the symmetry from P6_{3}cm to P3c1 before reaching the nonpolar P6_{3}/mmc state, analogous to the group-subgroup sequence observed at the high-temperature ferroelectric to paraelectric transition.
View Article and Find Full Text PDFOctahedral tilts are the most ubiquitous distortions in perovskite-related structures that can dramatically influence ferroelectric, magnetic, and electronic properties; yet the paradigm of tilt epitaxy in thin films is barely explored. Non-destructively characterizing such epitaxy in three-dimensions for low symmetry complex tilt systems composed of light anions is a formidable challenge. Here we demonstrate that the interfacial tilt epitaxy can transform ultrathin calcium titanate, a non-polar earth-abundant mineral, into high-temperature polar oxides that last above 900 K.
View Article and Find Full Text PDFMaterials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications.
View Article and Find Full Text PDFWe report on the magnetic structure and ordering of hexagonal LuFeO_{3} films of variable thickness grown by molecular-beam epitaxy on YSZ (111) and Al_{2}O_{3} (0001) substrates. These crystalline films exhibit long-range structural uniformity dominated by the polar P6_{3}cm phase, which is responsible for the paraelectric to ferroelectric transition that occurs above 1000 K. Using bulk magnetometry and neutron diffraction, we find that the system orders into a ferromagnetically canted antiferromagnetic state via a single transition below 155 K regardless of film thickness, which is substantially lower than that previously reported in hexagonal LuFeO_{3} films.
View Article and Find Full Text PDFPoly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) films exhibit a complex structure of interconnected conductive PEDOT domains in an insulating PSS matrix that controls their electrical properties. This structure is modified by a water rinse, which removes PSS with negligible PEDOT loss. Upon PSS removal, film thickness is reduced by 35%, conductivity is increased by 50%, and a prominent dielectric relaxation is eliminated.
View Article and Find Full Text PDF