Small-molecule modulators of diverse voltage-gated K (Kv) channels may help treat a wide range of neurological disorders. However, developing effective modulators requires understanding of their mechanism of action. We apply an orthogonal approach to elucidate the mechanism of action of an imidazolidinedione derivative (AUT5), a highly selective positive allosteric modulator of Kv3.
View Article and Find Full Text PDFThe recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2023
Various psychiatric diseases are characterized by aberrant cognition and emotional regulation. This includes inappropriately attributing affective salience to innocuous cues, which can be investigated using translationally relevant preclinical models of fear discrimination. Activity in the underpinning corticolimbic circuitry is governed by parvalbumin-expressing GABAergic interneurons, which also regulate fear discrimination.
View Article and Find Full Text PDFBackground: Current treatments for schizophrenia act directly on dopamine (DA) receptors but are ineffective for many patients, highlighting the need to develop new treatment approaches. Striatal DA dysfunction, indexed using [F]-FDOPA imaging, is linked to the pathoetiology of schizophrenia. We evaluated the effect of a novel drug, AUT00206, a Kv3.
View Article and Find Full Text PDFThe pathophysiology of schizophrenia involves abnormal reward processing, thought to be due to disrupted striatal and dopaminergic function. Consistent with this hypothesis, functional magnetic resonance imaging (fMRI) studies using the monetary incentive delay (MID) task report hypoactivation in the striatum during reward anticipation in schizophrenia. Dopamine neuron activity is modulated by striatal GABAergic interneurons.
View Article and Find Full Text PDFSynapse loss is associated with cognitive decline in Alzheimer's disease, and owing to their plastic nature, synapses are an ideal target for therapeutic intervention. Oligomeric amyloid beta around amyloid plaques is known to contribute to synapse loss in mouse models and is associated with synapse loss in human Alzheimer's disease brain tissue, but the mechanisms leading from Aβ to synapse loss remain unclear. Recent data suggest that the fast-activating and -inactivating voltage-gated potassium channel subtype 3.
View Article and Find Full Text PDFAutonomic parasympathetic preganglionic neurons (PGNs) drive contraction of the bladder during micturition but remain quiescent during bladder filling. This quiescence is postulated to be because of recurrent inhibition of PGN by fast-firing adjoining interneurons. Here, we defined four distinct neuronal types within Lamina VII, where PGN are situated, by combining whole cell patch clamp recordings with k-means clustering of a range of electrophysiological parameters.
View Article and Find Full Text PDFSpontaneous subthreshold activity in the central nervous system is fundamental to information processing and transmission, as it amplifies and optimizes sub-threshold signals, thereby improving action potential initiation and maintaining reliable firing. This form of spontaneous activity, which is frequently considered noise, is particularly important at auditory synapses where acoustic information is encoded by rapid and temporally precise firing rates. In contrast, when present in excess, this form of noise becomes detrimental to acoustic information as it contributes to the generation and maintenance of auditory disorders such as tinnitus.
View Article and Find Full Text PDFAUT00063 and AUT00202 are novel pharmaceutical modulators of the Kv3 subfamily of voltage-gated K channels. Kv3.1 channels, which control fast firing of many central auditory neurons, have been shown to decline with age and this may contribute to age-related deficits in central auditory processing.
View Article and Find Full Text PDFDrugs that block voltage-gated sodium channels (Nas) have utility in treating conditions including pain, epilepsy, and cardiac arrhythmias and as anesthetics (Lancet Neurol.20109413424; Expert Opin. Ther.
View Article and Find Full Text PDFTinnitus is unusual for such a common symptom in that there are few treatment options and those that are available are aimed at reducing the impact rather than specifically addressing the tinnitus percept. In particular, there is no drug recommended specifically for the management of tinnitus. Whilst some of the currently available interventions are effective at improving quality of life and reducing tinnitus-associated psychological distress, most show little if any effect on the primary symptom of subjective tinnitus loudness.
View Article and Find Full Text PDFAUT00063 is an experimental new medicine that has been demonstrated to suppress spontaneous hyperactivity by modulating the action of voltage-gated potassium-channels in central auditory cortical neurons of a rodent model. This neurobiological property makes it a good candidate for treating the central component of subjective tinnitus but this has not yet been tested in humans. The main purpose of the QUIET-1 (QUest In Eliminating Tinnitus) trial was to examine the effect of AUT00063 on the severity of tinnitus symptoms in people with subjective tinnitus.
View Article and Find Full Text PDFFragile X syndrome (FXS) is characterized by hypersensitivity to sensory stimuli, including environmental sounds. We compared the auditory brainstem response (ABR) recorded in mice lacking the gene ( ) for fragile X mental retardation protein (FMRP) with that in wild-type animals. We found that ABR wave I, which represents input from the auditory nerve, is reduced in animals, but only at high sound levels.
View Article and Find Full Text PDFTemporal processing by cochlear implant listeners is degraded and is affected by auditory deprivation. The fast-acting Kv3.1 potassium channel is important for sustained temporally accurate firing and is also susceptible to deprivation, the effects of which can be partially restored in animals by the molecule AUT00063.
View Article and Find Full Text PDFNoise exposure has been shown to produce long-lasting increases in spontaneous activity in central auditory structures in animal models, and similar pathologies are thought to contribute to clinical phenomena such as hyperacusis or tinnitus in humans. Here we demonstrate that multi-unit spontaneous neuronal activity in the inferior colliculus (IC) of mice is significantly elevated four weeks following noise exposure at recording sites with frequency tuning within or near the noise exposure band, and this selective central auditory pathology can be normalised through administration of a novel compound that modulates activity of Kv3 voltage-gated ion channels. The compound had no statistically significant effect on IC spontaneous activity without noise exposure, nor on thresholds or frequency tuning of tone-evoked responses either with or without noise exposure.
View Article and Find Full Text PDFThe purpose of this study was to test whether a Kv3 potassium channel modulator, AUT00063, has therapeutic potential for reversing noise-induced increases in spontaneous neural activity, a state that is widely believed to underlie noise-induced tinnitus. Recordings were conducted in noise exposed and control hamsters from dorsal cochlear nucleus (DCN) fusiform cells before and following intraperitoneal administration of AUT00063 (30 mg/kg). Fusiform cell spontaneous activity was increased in sound-exposed animals, approximating levels that were nearly 50% above those of controls.
View Article and Find Full Text PDFExposure to loud sound increases burst-firing of dorsal cochlear nucleus (DCN) fusiform cells in the auditory brainstem, which has been suggested to be an electrophysiological correlate of tinnitus. The altered activity of DCN fusiform cells may be due to down-regulation of high voltage-activated (Kv3-like) K currents. Whole cell current-clamp recordings were obtained from DCN fusiform cells in brain slices from P15-P18 CBA mice.
View Article and Find Full Text PDFHigher stages of central auditory processing compensate for a loss of cochlear nerve synapses by increasing the gain on remaining afferent inputs, thereby restoring firing rate codes for rudimentary sound features. The benefits of this compensatory plasticity are limited, as the recovery of precise temporal coding is comparatively modest. We reasoned that persistent temporal coding deficits could be ameliorated through modulation of voltage-gated potassium (Kv) channels that regulate temporal firing patterns.
View Article and Find Full Text PDFKv3.1 and Kv3.2 voltage-gated potassium channels are expressed on parvalbumin-positive GABAergic interneurons in corticolimbic brain regions and contribute to high-frequency neural firing.
View Article and Find Full Text PDFMany rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express "high threshold" voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.
View Article and Find Full Text PDFMutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.
View Article and Find Full Text PDFKv3.1 and Kv3.2 high voltage-activated potassium channels, which display fast activation and deactivation kinetics, are known to make a crucial contribution to the fast-spiking phenotype of certain neurons.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2012
Exposure to loud sound causes cochlear damage resulting in hearing loss and tinnitus. Tinnitus has been related to hyperactivity in the central auditory pathway occurring weeks after loud sound exposure. However, central excitability changes concomitant to hearing loss and preceding those periods of hyperactivity, remain poorly explored.
View Article and Find Full Text PDFRetigabine [RTG (international nonproprietary name); ezogabine (EZG; U.S. adopted name)] is a first-in-class antiepileptic drug (AED) that reduces neuronal excitability by enhancing the activity of KCNQ (K(v)7) potassium (K(+)) channels.
View Article and Find Full Text PDFThe pharmacologic profile of retigabine [RTG (international nonproprietary name); ezogabine, EZG (U.S. adopted name)], is different from all currently approved antiepileptic drugs (AEDs).
View Article and Find Full Text PDF