Hematology and serum chemistry reference intervals have been previously established for the endangered Hawaiian monk seal ( Neomonachus schauinslandi) as an imperative measure for health assessments. Monitoring the health of the wild population depends upon reference intervals that are context specific; hence we developed reference intervals from fresh samples, as opposed to frozen, from wild monk seals. This study builds on the number of parameters from previous efforts by using samples collected between 2004 and 2015 from wild monk seals.
View Article and Find Full Text PDFThere is considerable temporal and spatial variability in the reproductive rates of Hawaiian monk seals (HMS; Neomonachus schauinslandi). Poor reproductive performance limits the recovery of this endangered species; however, causal factors are not fully understood. There is serologic evidence that HMS are exposed to pathogens that can impact reproductive success, but the prevalence of placental infections in HMS has not been evaluated.
View Article and Find Full Text PDFWhere disease threatens endangered wildlife populations, substantial resources are required for management actions such as vaccination. While network models provide a promising tool for identifying key spreaders and prioritizing efforts to maximize efficiency, population-scale vaccination remains rare, providing few opportunities to evaluate performance of model-informed strategies under realistic scenarios. Because the endangered Hawaiian monk seal could be heavily impacted by disease threats such as morbillivirus, we implemented a prophylactic vaccination programme.
View Article and Find Full Text PDFWe developed a stochastic susceptible-exposed-infectious-removed (SEIR) model to simulate a range of plausible morbillivirus outbreak scenarios in a randomly mixing population of 170 endangered Hawaiian monk seals (Neomonachus schauinslandi). We then modeled realistic vaccination and quarantine measures to determine the potential efficacy of such mitigation efforts. Morbillivirus outbreaks represent substantial risk to monk seals-91% of simulated baseline outbreaks grew (R>1), and in one-third of the scenarios all, or nearly all, individuals were infected.
View Article and Find Full Text PDFProtozoal infections have been widely documented in marine mammals and may cause morbidity and mortality at levels that result in population level effects. The presence and potential impact on the recovery of endangered Hawaiian monk seals Neomonachus schauinslandi by protozoal pathogens was first identified in the carcass of a stranded adult male with disseminated toxoplasmosis and a captive monk seal with hepatitis. We report 7 additional cases and 2 suspect cases of protozoal-related mortality in Hawaiian monk seals between 2001 and 2015, including the first record of vertical transmission in this species.
View Article and Find Full Text PDFUnderstanding disease transmission dynamics, which are in part mediated by rates and patterns of social contact, is fundamental to predicting the likelihood, rate of spread, impacts, and mitigation of disease outbreaks in wildlife populations. Contact rates, which are important parameters required for epidemiologic models, are difficult to estimate. The endangered Hawaiian monk seal (Neomonachus schauinslandi) may be particularly vulnerable to morbillivirus outbreaks, due to its low abundance, lack of genetic diversity, and history of isolation from mammalian diseases.
View Article and Find Full Text PDF