HLA class I alleles of archaic origin may have been retained in modern humans because they provide immunity against diseases to which archaic humans had evolved resistance. According to this model, archaic introgressed alleles were somehow distinct from those that evolved in African populations. Here we show that HLA-B*73:01, a rare allotype with putative archaic origins, has a relatively rare peptide binding motif with an unusually long-tailed peptide length distribution.
View Article and Find Full Text PDFThe genus includes species such as , which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment.
View Article and Find Full Text PDFIn response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus.
View Article and Find Full Text PDFEur Phys J E Soft Matter
November 2023
Membrane-binding proteins often associate with lipid membranes through a singular binding interface which is generally modeled as a two-state system: bound or unbound. However, even a single interface can engage with more than one mode of binding since a variety of interactions can contribute to the binding event. Unfortunately, the ability to clearly delineate the different binding modes of a singular binding interface has been elusive with existing models.
View Article and Find Full Text PDFMycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein.
View Article and Find Full Text PDFThe widespread use of antibiotics has placed bacterial pathogens under intense pressure to evolve new survival mechanisms. Genomic analysis of 51,229 ()clinical isolates has identified an essential transcriptional regulator, , herein called for resilience regulator, as a frequent target of positive (adaptive) selection. mutants do not show canonical drug resistance or drug tolerance but instead shorten the post-antibiotic effect, meaning that they enable to resume growth after drug exposure substantially faster than wild-type strains.
View Article and Find Full Text PDFToxin-antitoxin (TA) systems allow bacteria to adapt to changing environments without altering gene expression. Despite being overrepresented in Mycobacterium tuberculosis, their physiological roles remain elusive. We describe a TA system in M.
View Article and Find Full Text PDFAlthough prokaryotic organisms lack traditional organelles, they must still organize cellular structures in space and time, challenges that different species solve differently. To systematically define the subcellular architecture of mycobacteria, we perform high-throughput imaging of a library of fluorescently tagged proteins expressed in Mycobacterium smegmatis and develop a customized computational pipeline, MOMIA and GEMATRIA, to analyze these data. Our results establish a spatial organization network of over 700 conserved mycobacterial proteins and reveal a coherent localization pattern for many proteins of known function, including those in translation, energy metabolism, cell growth and division, as well as proteins of unknown function.
View Article and Find Full Text PDFTemperate phages are pervasive in bacterial genomes, existing as vertically inherited islands termed prophages. Prophages are vulnerable to predation of their host bacterium by exogenous phages. Here, we identify BstA, a family of prophage-encoded phage-defense proteins in diverse Gram-negative bacteria.
View Article and Find Full Text PDF(Mab) is an emerging pathogen that is highly tolerant to current antibiotic therapies, and the current standard of care has a high failure rate. Mycobacteriophages represent a promising alternative treatment that have the potential to kill Mab with few side effects. However, the repertoire of phages that infect Mab is limited, and little is understood about the determinants of phage susceptibility in mycobacteria.
View Article and Find Full Text PDFThe recalcitrance of mycobacteria to antibiotic therapy is in part due to its ability to build proteins into a multi-layer cell wall. Proper synthesis of both cell wall constituents and associated proteins is crucial to maintaining cell integrity, and intimately tied to antibiotic susceptibility. How mycobacteria properly synthesize the membrane-associated proteome, however, remains poorly understood.
View Article and Find Full Text PDFGenomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics-even below this breakpoint-is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined.
View Article and Find Full Text PDFMycobacterium tuberculosis, the leading cause of death due to infection, has a dynamic and immunomodulatory cell envelope. The cell envelope structurally and functionally varies across the length of the cell and during the infection process. This variability allows the bacterium to manipulate the human immune system, tolerate antibiotic treatment and adapt to the variable host environment.
View Article and Find Full Text PDFVaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however, our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this, we developed the Spec-seq framework, which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell.
View Article and Find Full Text PDFEvidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement.
View Article and Find Full Text PDFMR1-restricted mucosal-associated invariant T (MAIT) cells represent a subpopulation of αβ T cells with innate-like properties and limited TCR diversity. MAIT cells are of interest because of their reactivity against bacterial and yeast species, suggesting that they play a role in defense against pathogenic microbes. Despite the advances in understanding MAIT cell biology, the molecular and structural basis behind their ability to detect MR1-Ag complexes is unclear.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are an evolutionarily conserved αβ T-cell lineage that express a semi-invariant T-cell receptor (TCR) restricted to the MHC related-1 (MR1) protein. MAIT cells are dependent upon MR1 expression and exposure to microbes for their development and stimulation, yet these cells can exhibit microbial-independent stimulation when responding to MR1 from different species. We have used this microbial-independent, cross-species reactivity of MAIT cells to define the molecular basis of MAIT-TCR/MR1 engagement and present here a 2.
View Article and Find Full Text PDFThe bacterium Deinococcus radiodurans exhibits an extreme resistance to ionizing radiation. A small subset of Deinococcus genus-specific genes were shown to be up-regulated upon exposure to ionizing radiation and to play a role in genome reconstitution. These genes include an SSB-like protein called DdrB.
View Article and Find Full Text PDFThe bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments.
View Article and Find Full Text PDF