Publications by authors named "Charles K Shearer"

Numerous missions to the Moon have identified and documented volatile deposits associated with permanently shadowed regions. A series of science goals for the Artemis Program is to explore these volatile deposits and return samples to Earth. Volatiles in these reservoirs may consist of a variety of species whose stable isotope characteristics could elucidate both their sources and the processes instrumental in their formation.

View Article and Find Full Text PDF

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion.

View Article and Find Full Text PDF

Primordial solidification of the Moon (or its uppermost layer) resulted in the formation of a variety of rock types that subsequently melted and mixed to produce the compositional diversity observed in the lunar sample suite. The initial rocks to crystallize from this Moon-wide molten layer (the magma ocean) contained olivine and pyroxene and were compositionally less evolved than the plagioclase-rich rocks that followed. The last stage of crystallization, representing the last few per cent of the magma ocean, produced materials that are strongly enriched in incompatible elements including potassium (K), the rare earth elements (REE) and phosphorus (P)--termed KREEP.

View Article and Find Full Text PDF