Publications by authors named "Charles K Mann"

The organization of myofibers and extra cellular matrix within the myocardium plays a significant role in defining cardiac function. When pathological events occur, such as myocardial infarction (MI), this organization can become disrupted, leading to degraded pumping performance. The current study proposes a multiscale finite element (FE) framework to determine realistic fiber distributions in the left ventricle (LV).

View Article and Find Full Text PDF

Multiscale models of the cardiovascular system are emerging as effective tools for investigating the mechanisms that drive ventricular growth and remodeling. These models can predict how molecular-level mechanisms impact organ-level structure and function and could provide new insights that help improve patient care. MyoFE is a multiscale computer framework that bridges molecular and organ-level mechanisms in a finite element model of the left ventricle that is coupled with the systemic circulation.

View Article and Find Full Text PDF

Multiscale models of the cardiovascular system can provide new insights into physiological and pathological processes. PyMyoVent is a computer model that bridges from molecular- to organ-level function and which simulates a left ventricle pumping blood through the systemic circulation. Initial work with PyMyoVent focused on the end-systolic pressure volume relationship and ranked potential therapeutic strategies by their impact on contractility.

View Article and Find Full Text PDF

Purpose: Mouse models are widely utilized to enhance our understanding of cardiac disease. The goal of this study is to investigate the reproducibility of strain parameters that were measured in mice using cardiac magnetic resonance (CMR) feature-tracking (CMR42, Canada).

Methods: We retrospectively analyzed black-blood CMR datasets from thirteen C57BL/6 B6.

View Article and Find Full Text PDF

Cardiomyocytes can adapt their size, shape, and orientation in response to altered biomechanical or biochemical stimuli. The process by which the heart undergoes structural changes-affecting both geometry and material properties-in response to altered ventricular loading, altered hormonal levels, or mutant sarcomeric proteins is broadly known as cardiac growth and remodeling (G&R). Although it is likely that cardiac G&R initially occurs as an adaptive response of the heart to the underlying stimuli, prolonged pathological changes can lead to increased risk of atrial fibrillation, heart failure, and sudden death.

View Article and Find Full Text PDF

Finite element (FE) modeling is becoming increasingly prevalent in the world of cardiac mechanics; however, many existing FE models are phenomenological and thus do not capture cellular-level mechanics. This work implements a cellular-level contraction scheme into an existing nonlinear FE code to model ventricular contraction. Specifically, this contraction model incorporates three myosin states: OFF-, ON-, and an attached force-generating state.

View Article and Find Full Text PDF