The production of laccases from Trametes pubescens was investigated along with the role of nutrients and elicitors. Copper proved to be a fundamental inducer, although productivity yields were consistently enhanced only in the presence of additional compounds (textile dyes). Using a central composite design, the optimal culture condition was examined, by taking into consideration the three distinct variables and their combinatorial effect.
View Article and Find Full Text PDFThe production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.
View Article and Find Full Text PDFImmobilizing enzymes can expand their applicability to continuous process operations and facilitates process intensification. An optimized formulation of immobilized biocatalysts is therefore of strategic interest in the field of industrial biotechnology. Nevertheless, biocatalyst formulation still largely relies on empirical approaches which lack effectiveness in the identification of optimum immobilization conditions.
View Article and Find Full Text PDFEnzymes are versatile catalysts with a growing number of applications in biotechnology. Their properties render them also attractive for waste/pollutant treatment processes and their use might be advantageous over conventional treatments. This review highlights enzymes that are suitable for waste treatment, with a focus on cell-free applications or processes with extracellular and immobilized enzymes.
View Article and Find Full Text PDFThe aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.
View Article and Find Full Text PDFA total of 37 strains of aquatic hyphomycetes and 95 fungal isolates derived from diverse freshwater environments were screened on agar plates for the decolourisation of the disazo dye Reactive Black 5 and the anthraquinone dye Reactive Blue 19. The decolourisation of 9 azo and 3 anthraquinone dyes by 9 selected aquatic fungi was subsequently assessed in a liquid test system. The fungi were representatives of mitosporic anamorphs, and 6 strains had proven ascomycete affiliations.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2005
Degradation of technical nonylphenol (t-NP), known as an endocrine-disrupting compound mixture, was assessed, using the mitosporic fungal strain UHH 1-6-18-4 isolated from nonylphenol-contaminated river water, and a strain of the aquatic hyphomycete Clavariopsis aquatica. GC-MS analysis could resolve 12 peaks attributable to nonyl chain-branched t-NP isomers. All were degraded, to individual extents.
View Article and Find Full Text PDF