Publications by authors named "Charles J Wilson"

A hallmark of Parkinson's disease is the appearance of correlated oscillatory discharge throughout the cortico-basal ganglia (BG) circuits. In the primate globus pallidus (GP), where the discharge of GP neurons is normally uncorrelated, pairs of GP neurons exhibit oscillatory spike correlations with a broad distribution of pairwise phase delays in experimental parkinsonism. The transition to oscillatory correlations is thought to indicate the collapse of the normally segregated information channels traversing the BG.

View Article and Find Full Text PDF

Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons.

View Article and Find Full Text PDF

Oscillatory signals propagate in the basal ganglia from prototypic neurons in the external globus pallidus (GPe) to their target neurons in the substantia nigra pars reticulata (SNr), internal pallidal segment, and subthalamic nucleus. Neurons in the GPe fire spontaneously, so oscillatory input signals can be encoded as changes in timing of action potentials within an ongoing spike train. When GPe neurons were driven by an oscillatory current in male and female mice, these spike-timing changes produced spike-oscillation coherence over a range of frequencies extending at least to 100 Hz.

View Article and Find Full Text PDF

Midbrain dopamine (DA) neurons are among the best characterized pacemaker neurons, having intrinsic, rhythmic firing activity even in the absence of synaptic input. However, the mechanisms of DA neuron pacemaking have not been systematically related to how these cells respond to synaptic input. The input-output properties of pacemaking neurons can be characterized by the phase-resetting curve (PRC), which describes the sensitivity of interspike interval (ISI) length to inputs arriving at different phases of the firing cycle.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of local inhibitory networks formed by GABAergic neurons in the external globus pallidus (GPe) on their firing patterns, using male and female mice as subjects.
  • Experiments revealed that silencing specific GPe neuron types led to increased firing rates and regularity, particularly in parvalbumin-positive neurons, while other types showed minimal changes.
  • The findings suggest that the irregular firing of GPe neurons is largely driven by continuous inhibitory signals from neighboring neurons, highlighting the complexity of local synaptic interactions in this brain region.
View Article and Find Full Text PDF

The external segment of globus pallidus (GPe) is a network of oscillatory neurons connected by inhibitory synapses. We studied the intrinsic dynamic and the response to a shared brief inhibitory stimulus in a model GPe network. Individual neurons were simulated using a phase resetting model based on measurements from mouse GPe neurons studied in slices.

View Article and Find Full Text PDF

We have previously established that PV neurons and Npas1 neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2 neurons, which are a unique subclass within the Npas1 class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes.

View Article and Find Full Text PDF

Neurons in the external globus pallidus (GPe) are autonomous pacemakers, but their spontaneous firing is continually perturbed by synaptic input. Because GPe neurons fire rhythmically in slices, spontaneous inhibitory synaptic currents (IPSCs) should be evident there. We identified periodic series of IPSCs in slices, each corresponding to unitary synaptic currents from one presynaptic cell.

View Article and Find Full Text PDF

Striatal interneurons and spiny projection (SP) neurons are differentially tuned to spectral components of their input. Previous studies showed that spike responses of somatostatin/NPY-expressing low threshold spike (LTS) interneurons have broad frequency tuning, setting these cells apart from other striatal GABAergic interneurons and SP neurons. We investigated the mechanism of LTS interneuron spiking resonance and its relationship to non-spiking membrane impedance resonance, finding that abolition of impedance resonance did not alter spiking resonance.

View Article and Find Full Text PDF

Unitary pallido-nigral synaptic currents were measured using optogenetic stimulation, which activated up to three unitary synaptic inputs to each substantia nigra pars reticulata (SNr) cell. Episodic barrages of synaptic conductances were generated based on in vivo firing patterns of globus pallidus pars externa (GPe) cells and applied to SNr cells using conductance clamp. Barrage inputs were compared to continuous step conductances with the same mean.

View Article and Find Full Text PDF

Striatal fast-spiking interneurons (FSIs) fire in variable-length runs of action potentials at 20-200 spikes/s separated by pauses. In vivo, or with fluctuating applied current, both runs and pauses become briefer and more variable. During runs, spikes are entrained specifically to gamma-frequency components of the input fluctuations.

View Article and Find Full Text PDF

Oscillatory input to networks, as indicated by field potentials, must entrain neuronal firing to be a causal agent in brain activity. Even when the oscillatory input is prominent, entrainment of firing is not a foregone conclusion but depends on the intrinsic dynamics of the postsynaptic neurons, including cell type-specific resonances, and background firing rates. Within any local network of neurons, only a subset of neurons may have their firing entrained by an oscillating synaptic input, and oscillations of different frequency may engage separate subsets of neurons.

View Article and Find Full Text PDF

Background: The phase resetting curve (PRC) is a primary measure of a rhythmically firing neuron's responses to synaptic input, quantifying the change in phase of the firing oscillation as a function of the input phase. PRCs provide information about whether neurons will synchronize due to synaptic coupling or shared input. However, PRC estimation has been limited to in vitro preparations where stable intracellular recordings can be obtained and background activity is minimal, and new methods are required for in vivo applications.

View Article and Find Full Text PDF

The role of the phase response curve (PRC) shape on the synchrony of synaptically coupled oscillating neurons is examined. If the PRC is independent of the phase, because of the synaptic form of the coupling, synchrony is found to be stable for both excitatory and inhibitory coupling at all rates, whereas the antisynchrony becomes stable at low rates. A faster synaptic rise helps extend the stability of antisynchrony to higher rates.

View Article and Find Full Text PDF

Spike-timing effects of small-amplitude sinusoidal currents were measured in mouse striatal spiny neurons firing repetitively. Spike-timing reliability varied with the stimulus frequency. For frequencies near the cell's firing rate, the cells altered firing rate to match the stimulus and became phase locked to it.

View Article and Find Full Text PDF

Anatomical studies have shown that the majority of callosal axons are glutamatergic. However, a small proportion of callosal axons are also immunoreactive for glutamic acid decarboxylase, an enzyme required for gamma-aminobutyric acid (GABA) synthesis and a specific marker for GABAergic neurons. Here, we test the hypothesis that corticocortical parvalbumin-expressing (CC-Parv) neurons connect the two hemispheres of multiple cortical areas, project through the corpus callosum, and are a functional part of the local cortical circuit.

View Article and Find Full Text PDF

Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically.

View Article and Find Full Text PDF

What is the meaning of an action potential? There must be different answers for neurons that fire spontaneously, even in the absence of synaptic input, and those driven to fire from a resting membrane potential. In spontaneously firing neurons, the occurrence of the next action potential is guaranteed; only variations in its timing can carry the message. In the basal ganglia, the globus pallidus, the substantia nigra, and the subthalamic nucleus consist of neurons firing spontaneously.

View Article and Find Full Text PDF

Neurons respond to synaptic inputs in cell-type-specific ways. Each neuron type may thus respond uniquely to shared patterns of synaptic input. We applied statistically identical barrages of artificial synaptic inputs to four striatal cell types to assess differences in their responses to a realistic input pattern.

View Article and Find Full Text PDF

The dorsal striatum is regarded as a substrate for action selection and motor habits, but much of it is connected to sensory, not motor, cortex. In this issue of Neuron, Reig and Silberberg (2014) use intracellular recording to reveal connections between sensory cortex and striatum.

View Article and Find Full Text PDF

We used phase resetting methods to predict firing patterns of rat subthalamic nucleus (STN) neurons when their rhythmic firing was densely perturbed by noise. We applied sequences of contiguous brief (0.5-2 ms) current pulses with amplitudes drawn from a Gaussian distribution (10-100 pA standard deviation) to autonomously firing STN neurons in slices.

View Article and Find Full Text PDF
Interaction function of oscillating coupled neurons.

Phys Rev E Stat Nonlin Soft Matter Phys

October 2013

Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses and parametrizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes.

View Article and Find Full Text PDF

We investigate why electrically coupled neuronal oscillators synchronize or fail to synchronize using the theory of weakly coupled oscillators. Stability of synchrony and antisynchrony is predicted analytically and verified using numerical bifurcation diagrams. The shape of the phase response curve (PRC), the shape of the voltage time course, and the frequency of spiking are freely varied to map out regions of parameter spaces that hold stable solutions.

View Article and Find Full Text PDF

The stability of phase-locked states of electrically coupled type-1 phase response curve neurons is studied using piecewise linear formulations for their voltage profile and phase response curves. We find that at low frequency and/or small spike width, synchrony is stable, and antisynchrony unstable. At high frequency and/or large spike width, these phase-locked states switch their stability.

View Article and Find Full Text PDF

We study synchronization phenomenon of coupled neuronal oscillators using the theory of weakly coupled oscillators. The role of sudden jumps in the phase response curve profiles found in some experimental recordings and models on the ability of coupled neurons to exhibit synchronous and antisynchronous behavior is investigated, when the coupling between the neurons is electrical. The level of jumps in the phase response curve at either end, spike width and frequency of voltage time course of the coupled neurons are parameterized using piecewise linear functional forms, and the conditions for stable synchrony and stable antisynchrony in terms of those parameters are computed analytically.

View Article and Find Full Text PDF