Methods Mol Biol
March 2024
N-methyladenosine (mA) is an abundant mRNA modification which plays important roles in regulating RNA function and gene expression. Traditional methods for visualizing mRNAs within cells cannot distinguish mA-modified and unmodified versions of the target transcript, thus limiting our understanding of how and where methylated transcripts are localized within cells. Here, we describe DART-FISH, a visualization technique which enables simultaneous detection of both mA-modified and unmodified target transcripts.
View Article and Find Full Text PDFN 6-methyladenosine (m6A) is an abundant RNA modification which plays critical roles in RNA function and cellular physiology. However, our understanding of how m6A is spatially regulated remains limited due to a lack of methods for visualizing methylated transcripts of interest in cells. Here, we develop DART-FISH, a method for in situ visualization of specific m6A sites in target RNAs which enables simultaneous detection of both m6A-modified and unmodified transcript copies.
View Article and Find Full Text PDFDe novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development.
View Article and Find Full Text PDFEmbryonic interneuron development underlies cortical function and its disruption contributes to neurological disease. Yet the mechanisms by which viable interneurons are produced from progenitors remain poorly understood. Here, we demonstrate dosage-dependent requirements of the exon junction complex component for interneuron genesis in mouse.
View Article and Find Full Text PDF