We present a general discussion about the fundamental physical principles involved in a novel class of optical superlenses that permit to realize in the far-field direct non-scanning images with subwavelength resolution. Described superlenses are based in the illumination of the object under observation with surface waves excited by fluorescence, the enhanced transmission of fluorescence via coupling with surface waves, and the occurrence of far-field coherence-related fluorescence diffraction phenomena. A Fourier optics description of the image formation based on illumination with surface waves is presented, and several recent experimental realizations of this technique are discussed.
View Article and Find Full Text PDFOptical images from nano-scale features were obtained by collection of leakage radiation coupled to surface plasmon polaritons excited by near-field fluorescence. Plasmonic crystals with spatial periods as small as 190 nm and non-periodic features separated by 80 nm, corresponding to ~λ/7, were clearly visible in the real plane images using this far-field technique. We show that the leaked light from the investigated samples carries detailed information to the far-field which is not present in the images obtained with conventional optical microscopy.
View Article and Find Full Text PDF