Background: Quantitative outcomes assessment remains a persistent challenge in orthopaedic trauma. Although patient-reported outcome measures (PROMs) and radiographic assessments such as Radiographic Union Scale for Tibial Fractures (RUST) scores are frequently used, very little evidence has been presented to support their validity for measuring structural bone formation or biomechanical integrity.
Methods: In this pilot study, a sequential cohort of patients with a tibial shaft fracture were prospectively recruited for observation following standard reamed intramedullary nailing in a level-I trauma center.
Background: For tibial fractures, the decision to fix a concomitant fibular fracture is undertaken on a case-by-case basis. To aid in this clinical decision-making process, we investigated whether loss of integrity of the fibula significantly destabilises midshaft tibial fractures, whether fixation of the fibula restores stability to the tibia, and whether removal of the fibula and interosseous membrane for expediency in biomechanical testing significantly influences tibial interfragmentary mechanics.
Methods: Tibia/fibula pairs were harvested from six cadaveric donors with the interosseous membrane intact.
Background: Recent advances in intramedullary (IM) nailing have focused on removing free play at the nail-screw interface to provide enhanced construct torsional stiffness. These changes also increase axial construct stiffness and reduce axial interfragmentary movement, which is required for optimal secondary fracture healing. This study tested whether a novel intramedullary nail, the Flexible Axial Stimulation (FAST) nail, can simultaneously provide controlled axial interfragmentary motion with enhanced torsional stiffness.
View Article and Find Full Text PDFClin Biomech (Bristol)
February 2012
Background: Animal studies and clinical trials have suggested that early application of controlled axial micromotion can accelerate healing of long bone fractures compared to rigid fixation. However, experimental investigations of micromotion constructs have been limited to external fixators, which have a higher incidence of complications than intramedullary nails. The purpose of this study was to assess whether a novel intramedullary nail design can generate stimulatory micromotion under minimal weight-bearing loads typical of the early healing period.
View Article and Find Full Text PDF