We previously identified the transcriptional regulator Zbtb32 as a factor that can promote T cell tolerance in the Non-Obese Diabetic (NOD) mouse, a model of Type 1 diabetes. Antigen targeted to DCIR2 dendritic cells (DCs) inhibited both diabetes and effector T cell expansion in NOD mice. Furthermore, Zbtb32 was preferentially induced in autoreactive CD4 T cells stimulated by these tolerogenic DCIR2 DCs, and overexpression of Zbtb32 in islet-specific T cells inhibited the diabetes development by limiting T cell proliferation and cytokine production.
View Article and Find Full Text PDFBackground: Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. Epidemiologic studies associate the risk of vulvodynia with a history of atopic disease. We used an established model of hapten-driven contact hypersensitivity to investigate the underlying mechanisms of allergy-provoked prolonged sensitivity to pressure.
View Article and Find Full Text PDFDissociating murine skin into a single cell suspension is essential for downstream cellular analysis such as the characterization of infiltrating immune cells in rodent models of skin inflammation. Here, we describe a protocol for the digestion of mouse skin in a nutrient-rich solution with collagenase D, followed by separation of hematopoietic cells using a discontinuous density gradient. Cells thus obtained can be used for in vitro studies, in vivo transfer, and other downstream cellular and molecular analyses including flow cytometry.
View Article and Find Full Text PDF