Background: Oscillometry devices allow quantification of respiratory function at tidal breathing but device-specific reference equations are scarce: the present study aims to create sex-specific oscillometric reference values for children and adolescents using the Resmon PRO FULL device.
Methods: Healthy participants (n=981) aged 6 to 17 years of the Austrian LEAD general population cohort were included. Subjects had normal weight (body mass index ≤99th percentile) and normal lung volumes (total lung capacity (TLC) ≥ lower limit of normal).
Background: Bronchodilator response (BDR) is a measure of improvement in airway smooth muscle tone, inhibition of liquid accumulation and mucus section into the lumen in response to short-acting beta-2 agonists that varies among asthmatic patients. MicroRNAs (miRNAs) are well-known post-translational regulators. Identifying miRNAs associated with BDR could lead to a better understanding of the underlying complex pathophysiology.
View Article and Find Full Text PDFAm J Respir Crit Care Med
February 2024
Respiratory resistance (Rrs) and reactance (Xrs) as measured by oscillometry and their intrabreath changes have emerged as sensitive parameters for detecting early pathological impairments during tidal breathing. This study evaluates the prevalence and association of abnormal oscillometry parameters with respiratory symptoms and respiratory diseases in a general adult population. A total of 7,560 subjects in the Austrian LEAD (Lung, hEart, sociAl, boDy) Study with oscillometry measurements (computed with the Resmon Pro FULL; Restech Srl) were included in this study.
View Article and Find Full Text PDFRationale: Bronchodilator response (BDR) is a measure of improvement in airway smooth muscle tone, inhibition of liquid accumulation and mucus section into the lumen in response to short-acting beta-2 agonists that varies among asthmatic patients. MicroRNAs (miRNAs) are well-known post-translational regulators. Identifying miRNAs associated with BDR could lead to a better understanding of the underlying complex pathophysiology.
View Article and Find Full Text PDFBackground: Asthma is a chronic heterogeneous respiratory disease involving differential pathophysiological pathways and consequently distinct asthma phenotypes.
Objective And Methods: In the LEAD Study, a general population cohort (n=11.423) in Vienna ranging from 6-82 years of age, we addressed the prevalence of asthma and explored inflammatory asthma phenotypes that included allergic and non-allergic asthma, and within these phenotypes, an eosinophilic (eosinophils ≥300 cells/µL, or ≥150 cells/µL in the presence of ICS medication) or non-eosinophilic (eosinophils <300 cells/µL, or <150 cells/µL in the presence of ICS) phenotype.
Background And Objective: Airway hyperresponsiveness (AHR) is commonly assessed by a methacholine challenge test (MCT), during which a provocative concentration causing a 20% reduction in forced expiratory volume in 1 second (FEV ) (PC ) < 8 mg/ml is considered a positive response. However, a fall in specific airway conductance (sGaw) may also have clinical significance. The purpose of this study was to assess whether AHR determined by a provocative concentration causing a 40% reduction in sGaw (PC ) < 8 mg/ml corresponds to a clinical diagnosis of asthma.
View Article and Find Full Text PDFImmunol Allergy Clin North Am
August 2022
Asthma and chronic obstructive pulmonary disease (COPD) are both characterized by airway obstruction and share similar clinical manifestations. However, they differ in many respects related to underlying cause, mechanism of airway obstruction, pattern and progression of symptoms, and response to therapy. It remains unclear whether there is a unique physiologic phenotype that characterizes asthma-COPD overlap (ACO).
View Article and Find Full Text PDFBackground: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2.
View Article and Find Full Text PDFPurpose: We quantified the magnitude of exercise-induced bronchodilation in adult asthmatics under conditions of narrowed and dilated airways. We then assessed the effect of the bronchodilation on ventilatory capacity and the extent of ventilatory limitation during exercise.
Methods: Eleven asthmatics completed three exercise bouts on a cycle ergometer.
Introduction: This study examined whether exposure to reduced-nicotine-content cigarettes (RNCCs) for 12 weeks alters respiratory health using Fractional Exhaled Nitric Oxide (FeNO), a validated biomarker of respiratory epithelial health, and the Respiratory Health Questionnaire (RHQ), a subject-rated questionnaire on respiratory symptoms. Participants were 747 adult daily smokers enrolled in three double-blind, randomized clinical trials evaluating effects of cigarette nicotine content (0.4, 2.
View Article and Find Full Text PDFBackground: The spirometric response to fast-acting bronchodilator is used clinically to diagnose asthma and in clinical research to verify its presence. However, bronchodilator responsiveness does not correlate with airway hyper-responsiveness measured with the direct-acting stimulus of methacholine, demonstrating that bronchodilator responsiveness is a problematic method for diagnosing asthma. The relationship between bronchodilator responsiveness and airway hyper-responsiveness assessed with indirect-acting stimuli is not known.
View Article and Find Full Text PDFS-glutathionylation of reactive protein cysteines is a post-translational event that plays a critical role in transducing signals from oxidants into biological responses. S-glutathionylation can be reversed by the deglutathionylating enzyme glutaredoxin (GLRX). We have previously demonstrated that ablation of Glrx sensitizes mice to the development of parenchymal lung fibrosis(1).
View Article and Find Full Text PDFBackground: Biomarkers that can predict loss of asthma control among patients being considered for step-down therapy in well-controlled disease are lacking.
Objective: To evaluate whether baseline biomarkers of type 2 airway inflammation and/or serial measurement of fractional exhaled nitric oxide (Feno) predict loss of asthma control as therapy is stepped down.
Methods: In subanalyses of a multicenter randomized, double-blind, parallel 3-arm trial comparing strategies for step-down therapy in well-controlled asthma (Long-Acting Beta-Agonist Step-Down Study), we assessed whether baseline atopy as determined by serum aeroallergen allergy screening test (Phadiatop), baseline serum eosinophil peroxidase, or baseline or serial Feno measurements during follow-up predicted the time to loss of asthma control among participants.
The stress-induced kinase, c-Jun-N-terminal kinase 1 (JNK1) has previously been implicated in the pathogenesis of lung fibrosis. However, the exact cell type(s) wherein JNK1 exerts its pro-fibrotic role(s) remained enigmatic. Herein we demonstrate prominent activation of JNK in bronchial epithelia using the mouse models of bleomycin- or AdTGFβ1-induced fibrosis.
View Article and Find Full Text PDFAsthma is a chronic disorder characterized by inflammation, mucus metaplasia, airway remodeling, and hyperresponsiveness. We recently showed that IL-1-induced glycolytic reprogramming contributes to allergic airway disease using a murine house dust mite model. Moreover, levels of pyruvate kinase M2 (PKM2) were increased in this model as well as in nasal epithelial cells from asthmatics as compared with healthy controls.
View Article and Find Full Text PDFOscillometry (also known as the forced oscillation technique) measures the mechanical properties of the respiratory system (upper and intrathoracic airways, lung tissue and chest wall) during quiet tidal breathing, by the application of an oscillating pressure signal (input or forcing signal), most commonly at the mouth. With increased clinical and research use, it is critical that all technical details of the hardware design, signal processing and analyses, and testing protocols are transparent and clearly reported to allow standardisation, comparison and replication of clinical and research studies. Because of this need, an update of the 2003 European Respiratory Society (ERS) technical standards document was produced by an ERS task force of experts who are active in clinical oscillometry research.
View Article and Find Full Text PDF