Maize () is a major global food crop and a source of industrial raw materials. Effective postharvest storage is important for national food security programs, international trade, and global agriculture economics. The maize weevil () is a primary postharvest insect pest that infests maize during storage and leads to significant losses.
View Article and Find Full Text PDFMicrobes in floral nectar can impact both their host plants and floral visitors, yet little is known about the nectar microbiome of most pollinator-dependent crops. In this study, we examined the abundance and composition of the fungi and bacteria inhabiting Vaccinium spp. nectar, as well as nectar volume and sugar concentrations.
View Article and Find Full Text PDFCarotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored.
View Article and Find Full Text PDFPlant organ growth results from the combined activity of cell division and cell expansion. The co-ordination of these two processes depends on the interplay between multiple hormones that determine the final organ size. Using the semidominant () maize mutant that hypersignals the perception of cytokinin (CK), we show that CK can reduce leaf size and growth rate by decreasing cell division.
View Article and Find Full Text PDFNearly all eukaryotes carry DNA transposons of the Robertson's () superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of transposase genes and TIRs.
View Article and Find Full Text PDFNarrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments.
View Article and Find Full Text PDFPlant-produced volatile compounds play important roles in plant signaling and in the communication of plants with other organisms. Many plants emit green leaf volatiles (GLVs) in response to damage or attack, which serve to warn neighboring plants or attract predatory or parasitic insects to help defend against insect pests. GLVs include aldehydes, esters, and alcohols of 6-carbon compounds that are released rapidly following wounding.
View Article and Find Full Text PDFZea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z.
View Article and Find Full Text PDFSeveral recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation.
View Article and Find Full Text PDFTwo aerobic endospore-forming bacteria (AEFB), isolates SAB19 and SAD18, capable of biosurfactant production were isolated from a sediment core sampled from Mfabeni peatland, St Lucia, KwaZulu-Natal, South Africa. The isolates were screened for biosurfactant activity using drop collapse assay, hemolysis assay, oil spreading assay, emulsification, and surface tension measurement. The effect of environmental parameters--temperature [35 - 100 °C], pH [3.
View Article and Find Full Text PDFThe CRISPR/Cas9-based system for targeted mutagenesis has become an indispensable tool for functional genetics in plants. CRISPR/Cas9 allows users to generate loss-of-function alleles in genes of interest with precision and in a simple-to-use system. This manuscript outlines important points to consider for experimental design and utilization of CRISPR/Cas9 in targeted mutagenesis in maize.
View Article and Find Full Text PDFSequence-indexed insertional libraries in maize () are fundamental resources for functional genetics studies. Here, we constructed a () insertional library in the B73 inbred background designated A total of 1,152 -tagged F-families were sequenced using the -seq approach. We detected 225,936 genomic insertion sites and 41,086 high quality germinal insertions covering 16,392 of the annotated maize genes (37% of the B73v4 genome).
View Article and Find Full Text PDFLittle is known regarding insect defense pathways in Setaria viridis (setaria), a model system for panicoid grasses, including Zea mays (maize). It is thus of interest to compare insect herbivory responses of setaria and maize. Here we use metabolic, phylogenetic, and gene expression analyses to measure a subset of jasmonic acid (JA)-related defense responses to leaf-chewing caterpillars.
View Article and Find Full Text PDFPlant Cell Environ
January 2020
To grow and thrive plants must be able to adapt to both adverse environmental conditions and attack by a variety of pests. Elucidating the sophisticated mechanisms plants have developed to achieve this has been the focus of many studies. What is less well understood is how plants respond when faced with multiple stressors simultaneously.
View Article and Find Full Text PDFGreen plants emit green leaf volatiles (GLVs) as a general damage response. These compounds act as signals for the emitter plant, neighboring plants, and even for insects in the ecosystem. However, when oral secretions from certain caterpillars are applied to wounded leaves, GLV emissions are significantly decreased or modified.
View Article and Find Full Text PDFThe maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms.
View Article and Find Full Text PDFThe last 2 decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe, and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e.
View Article and Find Full Text PDFThe maize inbred line W22 has lower herbivore-induced volatile production than B73 but both fall armyworm larvae and the wasps that parasitize them prefer W22 over B73. Maize inbred line W22 is an important resource for genetic studies due to the availability of the UniformMu mutant population and a complete genome sequence. In this study, we assessed the suitability of W22 as a model for tritrophic interactions between maize, Spodoptera frugiperda (fall armyworm) and the parasitoid wasp Cotesia marginiventris.
View Article and Find Full Text PDFPlant defense research is facilitated by the use of genome-sequenced inbred lines; however, a foundational knowledge of interactions in commercial hybrids remains relevant to understanding mechanisms present in crops. Using an array of commercial maize hybrids, we quantified the accumulation patterns of defense-related metabolites and phytohormones in tissues challenged with diverse fungal pathogens. Across hybrids, Southern leaf blight (Cochliobolus heterostrophus) strongly elicited specific sesqui- and diterpenoid defenses, namely zealexin A4 (ZA4) and kauralexin diacids, compared with the stalk-rotting agents Fusarium graminearum and Colletotrichum graminicola.
View Article and Find Full Text PDFMaize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis.
View Article and Find Full Text PDFReactive oxygen species (ROS) can be elicited by many forms of stress, including pathogen attack, abiotic stress, damage and insect infestation. Perception of microbe- or damage-associated elicitors triggers an ROS burst in many plant species; however, the impact of herbivore fatty-acid amides on ROS elicitation remains largely unexplored. In this study we show that the lepidopteran-derived fatty-acid amide elicitor N-linolenoyl-L-glutamine (GLN18:3) can induce a ROS burst in multiple plant species.
View Article and Find Full Text PDFChemical isolation and NMR-based structure elucidation revealed a novel keto-acidic sesquiterpenoid, termed zealexin A4 (ZA4). ZA4 is elicited by pathogens and herbivory, but attenuated by heightened levels of CO . The identification of the labdane-related diterpenoids, termed kauralexins and acidic sesquiterpenoids, termed zealexins, demonstrated the existence of at least ten novel stress-inducible maize metabolites with diverse antimicrobial activity.
View Article and Find Full Text PDFRecently we investigated the function of the 9-lipoxygenase (LOX) derived cyclopentenones 10-oxo-11-phytoenoic acid (10-OPEA) and 10-oxo-11,15-phytodienoic acid (10-OPDA) and identified their C-14 and C-12 derivatives. 10-OPEA accumulation is elicited by fungal and insect attack and acts as a strong inhibitor of microbial and herbivore growth. Although structurally similar, comparative analyses between 10-OPEA and its 13-LOX analog 12-oxo-phytodienoic acid (12-OPDA) demonstrate specificity in transcript accumulation linked to detoxification, secondary metabolism, jasmonate regulation, and protease inhibition.
View Article and Find Full Text PDF