Publications by authors named "Charles Hesser"

Poxviruses are unusual DNA viruses that replicate in the cytoplasm. To do so, they encode approximately 100 immunomodulatory proteins that counteract cytosolic nucleic acid sensors such as cGAMP synthase (cGAS) along with several other antiviral response pathways. Yet most of these immunomodulators are expressed very early in infection while many are variable host range determinants, and significant gaps remain in our understanding of poxvirus sensing and evasion strategies.

View Article and Find Full Text PDF

Recent studies have begun to reveal the complex and multifunctional roles of -methyladenosine (mA) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated.

View Article and Find Full Text PDF

Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV).

View Article and Find Full Text PDF

Type I IFNs (IFN-I) are key innate mediators that create a profound antiviral state and orchestrate the activation of almost all immune cells. Plasmacytoid dendritic cells (pDCs) are the most powerful IFN-I-producing cells and play important roles during viral infections, cancer, and autoimmune diseases. By comparing gene expression profiles of murine pDCs and conventional DCs, we found that CD28, a prototypic T cell stimulatory receptor, was highly expressed in pDCs.

View Article and Find Full Text PDF
Article Synopsis
  • Recognition and elimination of tumor cells by the immune system, particularly through Natural Killer (NK) cells and their NKG2D receptor, is vital for controlling tumor growth.
  • A study using a forward genetic screen in a human tumor cell line revealed new factors that promote the expression of ULBP1, a ligand for NKG2D.
  • Key findings showed that the transcription factor ATF4 increases ULBP1 gene expression, while the RNA-binding protein RBM4 enhances ULBP1 levels by preventing the creation of a specific alternative mRNA isoform, highlighting important stress pathways that activate the immune response.
View Article and Find Full Text PDF

Transcription of herpesviral late genes is stimulated after the onset of viral DNA replication but otherwise restricted. Late gene expression in gammaherpesviruses requires the coordination of six early viral proteins, termed viral transactivation factors (vTFs). Here, we mapped the organization of this protein complex for Kaposi's sarcoma-associated herpesvirus.

View Article and Find Full Text PDF

Unlabelled: Rapid innate responses to viral encounters are crucial to shaping the outcome of infection, from viral clearance to persistence. Transforming growth factor β (TGF-β) is a potent immune suppressor that is upregulated early upon viral infection and maintained during chronic infections in both mice and humans. However, the role of TGF-β signaling in regulating individual cell types in vivo is still unclear.

View Article and Find Full Text PDF