Publications by authors named "Charles H Peterson"

Large predators play important ecological roles, yet many are disproportionately imperiled. In marine systems, artificial reefs are often deployed to restore degraded reefs or supplement existing reefs, but it remains unknown whether these interventions benefit large predators. Comparative field surveys of thirty artificial and natural reefs across ~200 km of the North Carolina, USA coast revealed large reef-associated predators were more dense on artificial than natural reefs.

View Article and Find Full Text PDF

Spatial planning increasingly incorporates theoretical predictions that artificial habitats assist species movement at or beyond range edges, yet evidence for this is uncommon. We conducted surveys of highly mobile fauna (fishes) on artificial habitats (reefs) on the southeastern USA continental shelf to test whether, in comparison to natural reefs, artificial reefs enhance local abundance and biomass of fishes at their poleward range margins. Here, we show that while temperate fishes were more abundant on natural reefs, tropical, and subtropical fishes exhibited higher abundances and biomasses on deep (25-35 m) artificial reefs.

View Article and Find Full Text PDF

Nature-based solutions, such as living shorelines, have the potential to restore critical ecosystems, enhance coastal sustainability, and increase resilience to natural disasters; however, their efficacy during storm events compared to traditional hardened shorelines is largely untested. This is a major impediment to their implementation and promotion to policy-makers and homeowners. To address this knowledge gap, we evaluated rock sill living shorelines as compared to natural marshes and hardened shorelines (i.

View Article and Find Full Text PDF

Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts.

View Article and Find Full Text PDF

Carbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs' role as sources (+) or sinks (-) of atmospheric CO While CO release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO (7.

View Article and Find Full Text PDF

Gulf menhaden (Brevoortia patronus) exhibited unprecedented juvenile recruitment in 2010 during the year of the Deepwater Horizon well blowout, exceeding the prior 39-year mean by more than four standard deviations near the Mississippi River. Abundance of that cohort remained exceptionally high for two subsequent years as recruits moved into older age classes. Such changes in this dominant forage fish population can be most parsimoniously explained as consequences of release from predation.

View Article and Find Full Text PDF

Coastal ecosystems provide numerous services, such as nutrient cycling, climate change amelioration, and habitat provision for commercially valuable organisms. Ecosystem functions and processes are modified by human activities locally and globally, with degradation of coastal ecosystems by development and climate change occurring at unprecedented rates. The demand for coastal defense strategies against storms and sea-level rise has increased with human population growth and development along coastlines world-wide, even while that population growth has reduced natural buffering of shorelines.

View Article and Find Full Text PDF

Complexity is increasingly the hallmark in environmental management practices of sandy shorelines. This arises primarily from meeting growing public demands (e.g.

View Article and Find Full Text PDF

Beach nourishment is increasingly used to protect public beach amenity and coastal property from erosion and storm damage. Where beach nourishment uses fill sediments that differ in sedimentology from native beach sands, press disturbances to sandy beach invertebrates and their ecosystem services can occur. How long impacts persist is, however, unclear because monitoring after nourishment typically only extends for several months.

View Article and Find Full Text PDF

Overfishing and environmental change have triggered many severe and unexpected consequences. As existing communities have collapsed, new ones have become established, fundamentally transforming ecosystems to those that are often less productive for fisheries, more prone to cycles of booms and busts, and thus less manageable. We contend that the failure of fisheries science and management to anticipate these transformations results from a lack of appreciation for the nature, strength, complexity, and outcome of species interactions.

View Article and Find Full Text PDF

Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights.

View Article and Find Full Text PDF

Dramatic perturbations of ecological communities through rapid shifts in environmental regime do not always result in complete mortality of residents. Instead, legacy individuals may remain and influence the succession and composition of subsequent communities. We used a reciprocal transplant experiment to investigate whether a legacy effect is detectable in communities experiencing an abrupt increase or decrease in hydrothermal fluid flux at deep-sea vents.

View Article and Find Full Text PDF

Tidal marshes are valued, protected and restored in recognition of their ecosystem services: (1) high productivity and habitat provision supporting the food web leading to fish and wildlife, (2) buffer against storm wave damage, (3) shoreline stabilization, (4) flood water storage, (5) water quality maintenance, (6) biodiversity preservation, (7) carbon storage and (8) socio-economic benefits. Under US law, federal and state governments have joint responsibility for facilitating restoration to compensate quantitatively for ecosystem services lost because of oil spills and other contaminant releases on tidal marshes. This responsibility is now met by choosing and employing metrics (proxies) for the suite of ecosystem services to quantify injury and scale restoration accordingly.

View Article and Find Full Text PDF

The proposition to introduce the Asian oyster Crassostrea ariakensis to the mid-Atlantic region of the USA is being considered with caution, particularly after the discovery of a novel microcell haplosporidian parasite, Bonamia sp., in North Carolina. Although this parasite was found to be pathogenic in C.

View Article and Find Full Text PDF

Asian oyster Crassostrea ariakensis is being considered for introduction to Atlantic coastal waters of the USA. Successful aquaculture of this species will depend partly on mitigating impacts by Bonamia sp., a parasite that has caused high C.

View Article and Find Full Text PDF

Impacts of chronic overfishing are evident in population depletions worldwide, yet indirect ecosystem effects induced by predator removal from oceanic food webs remain unpredictable. As abundances of all 11 great sharks that consume other elasmobranchs (rays, skates, and small sharks) fell over the past 35 years, 12 of 14 of these prey species increased in coastal northwest Atlantic ecosystems. Effects of this community restructuring have cascaded downward from the cownose ray, whose enhanced predation on its bay scallop prey was sufficient to terminate a century-long scallop fishery.

View Article and Find Full Text PDF

Examination of the oyster Ostreola equestris as a potential reservoir host for a species of Bonamia discovered in Crassostrea ariakensis in North Carolina (NC), USA, revealed a second novel Bonamia sp. Histopathology, electron microscopy, and molecular phylogenetic analysis support the designation of a new parasite species, Bonamia perspora n. sp.

View Article and Find Full Text PDF

Estuarine and coastal transformation is as old as civilization yet has dramatically accelerated over the past 150 to 300 years. Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted >90% of formerly important species, destroyed >65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions. Twentieth-century conservation efforts achieved partial recovery of upper trophic levels but have so far failed to restore former ecosystem structure and function.

View Article and Find Full Text PDF

Predicting outcomes of species introductions may be enhanced by integrating life-history theory with results of contained experiments that compare ecological responses of exotic and analogue native species to dominant features of the recipient environment. An Asian oyster under consideration for introduction to the Chesapeake Bay, USA, the rapidly growing Suminoe oyster (Crassostrea ariakensis), may not be as successful an invader as its r-selected life history suggests if the trade-off for rapid growth and maturation is lower investment in defenses against blue crab (Callinectes sapidus) predation than the native Eastern oyster (Crassostrea virginica). In laboratory trials, blue crabs simultaneously offered equal numbers of Suminoe and Eastern oysters consumed more nonnatives, irrespective of whether the crabs had previous experience with Suminoe oysters as prey.

View Article and Find Full Text PDF

The paradigmatic gradient for intertidal marine organisms of increasing physical stress from low to high elevation has long served as the basis for using direct effects of duration of water coverage to predict many biological patterns. Accordingly, changes in potential feeding time may predict the direction and magnitude of differences between elevations in individual growth rates of sessile marine invertebrates. Oysters (triploid Crassostrea ariakensis) experimentally introduced at intertidal (MLW+0.

View Article and Find Full Text PDF

The ecosystem response to the 1989 spill of oil from the Exxon Valdez into Prince William Sound, Alaska, shows that current practices for assessing ecological risks of oil in the oceans and, by extension, other toxic sources should be changed. Previously, it was assumed that impacts to populations derive almost exclusively from acute mortality. However, in the Alaskan coastal ecosystem, unexpected persistence of toxic subsurface oil and chronic exposures, even at sublethal levels, have continued to affect wildlife.

View Article and Find Full Text PDF

Bay scallops (Argopecten irradians concentricus) are patchily distributed on two dominant spatial scales: (1) geographically restricted to highly saline marine lagoons, and (2) locally abundant within such lagoons only in relatively discrete beds of seagrass habitat. In the Cape Lookout lagoonal system of North Carolina, adult bay scallop abundance in the most densely occupied seagrass bed (Oscar Shoal) exhibits repeatable declines from up to 70 m to near zero in a 2- to 4-week period during late summer. This crash is completed before fall spawning can be initiated, thereby creating a population sink in what is the singly most productive patch of habitat.

View Article and Find Full Text PDF

Macoma balthica (L.) is a common clam of the estuarine seafloor, belonging to an important group of invertebrates possessing the capacity to choose between the two fundamental modes of feeding available, using its siphon to inhale either suspended food particles from the water or food particles deposited on the sediment surface. Field experiments demonstrate that intraspecific competition, effects of other competing benthic invertebrates, and complex interactions between competition and partial predation (siphon cropping by fishes) modify the foraging behavior of Macoma.

View Article and Find Full Text PDF

Macoma balthica (L.), an abundant clam, ubiquitous in temperate estuaries across the North Atlantic, is known to practice both alternative basic modes of feeding available to seafloor invertebrates. It either holds its feeding organ, the siphon, at a fixed position just above the sediment surface to filter out food particles suspended in the overlying water or else extends and moves its siphon around to vacuum up deposited food particles on the sediment surface.

View Article and Find Full Text PDF