Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRalpha signaling is coordinated by the primary cilium in quiescent cells.
View Article and Find Full Text PDFCiliary guanine nucleotide exchange factors (GEFs) potentially activate G proteins in intraflagellar transport (IFT) cargo release. Several classes of GEFs have been localized to cilia or basal bodies and shown to be functionally important in the prevention of ciliopathies, but ciliary Arl-type Sec 7 related GEFs have not been well characterized. Nair et al.
View Article and Find Full Text PDFWild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged.
View Article and Find Full Text PDFThe origin of cilia, a fundamental eukaryotic organelle, not present in prokaryotes, poses many problems, including the origins of motility and sensory function, the origins of nine-fold symmetry, of basal bodies, and of transport and selective mechanisms involved in ciliogenesis. We propose the basis of ciliary origin to be a self-assembly RNA enveloped virus that contains unique tubulin and tektin precursors. The virus becomes the centriole and basal body, which would account for the self-assembly and self-replicative properties of these organelles, in contrast to previous proposals of spirochaete origin or endogenous differentiation, which do not readily account for the centriole or its properties.
View Article and Find Full Text PDFCentrin, an EF hand Ca(2+) binding protein, has been cloned in Tetrahymena thermophila. It is a 167 amino acid protein of 19.4 kDa with a unique N-terminal region, coded by a single gene containing an 85-base pair intron.
View Article and Find Full Text PDF