Lemna, a member of the Lemnaceae or duckweed family, is a small aquatic plant that can be quickly transformed to produce recombinant proteins in a contained and controlled bioprocessing environment. The containment capability of Lemna has been further improved with the creation of an auxotroph platform that requires isoleucine supplementation for survival of transformed plant lines. Using an RNAi based approach, threonine deaminase (TD) expression was targeted and thus resulted in dramatically reduced expression of this key enzyme in the isoleucine biosynthesis pathway.
View Article and Find Full Text PDFN-glycosylation is critical to the function of monoclonal antibodies (mAbs) and distinguishes various systems used for their production. We expressed human mAbs in the small aquatic plant Lemna minor, which offers several advantages for manufacturing therapeutic proteins free of zoonotic pathogens. Glycosylation of a mAb against human CD30 was optimized by co-expressing the heavy and light chains of the mAb with an RNA interference construct targeting expression of the endogenous alpha-1,3-fucosyltransferase and beta-1,2-xylosyltransferase genes.
View Article and Find Full Text PDFGene silencing, or RNA interference, is a powerful tool for elucidating gene function in Caenorhabditis elegans and Drosophila melanogaster. The vast genetic, developmental and sequence information available for Arabidopsis thaliana makes this an attractive organism in which to develop reliable gene-silencing tools for the plant world. We have developed a system based on the bipartite geminivirus cabbage leaf curl virus (CbLCV) that allows silencing of endogenous genes singly or in combinations in Arabidopsis.
View Article and Find Full Text PDF