Telomerase, the enzyme that maintains telomeres at natural chromosome ends, should be repressed at double-strand breaks (DSBs), where neotelomere formation can cause terminal truncations. We developed an assay to detect neotelomere formation at Cas9- or I-SceI-induced DSBs in human cells. Telomerase added telomeric repeats to DSBs, leading to interstitial telomeric repeat insertions or the formation of functional neotelomeres accompanied by terminal deletions.
View Article and Find Full Text PDFThe mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a cancer-promoting long noncoding RNA, accumulates in cells by using a 3'-triple-helical RNA stability element for nuclear expression (ENE). The ENE, a stem-loop structure containing a U-rich internal loop, interacts with a downstream A-rich tract (ENE+A) to form a blunt-ended triple helix composed of nine U•A-U triples interrupted by a C•G-C triple and C-G doublet. This unique structure prompted us to explore the possibility of protein binding.
View Article and Find Full Text PDFTriple-stranded RNA was first deduced to form in vitro more than 50 years ago and has since been implicated in RNA catalysis, stability, and small molecule binding. Despite the emerging biological significance of RNA triple helices, it remains unclear how their nucleotide composition contributes to their thermodynamic stability and cellular function. To investigate these properties, we used in vitro RNA electrophoretic mobility shift assays (EMSAs) and in vivo intronless β-globin reporter assays to measure the relative contribution of 20 RNA base triples (N•A-U, N•G-C, N•C-G, N•U-A, and N•G-U) to triple-helical stability.
View Article and Find Full Text PDF