Publications by authors named "Charles E Hendrick"

A platform to accelerate optimization of proteolysis targeting chimeras (PROTACs) has been developed using a direct-to-biology (D2B) approach with a focus on linker effects. A large number of linker analogs-with varying length, polarity, and rigidity-were rapidly prepared and characterized in four cell-based assays by streamlining time-consuming steps in synthesis and purification. The expansive dataset informs on linker structure-activity relationships (SAR) for in-cell E3 ligase target engagement, degradation, permeability, and cell toxicity.

View Article and Find Full Text PDF

A copper-catalyzed carbochlorination of alkenes with aryl malononitriles and chloride is disclosed. This net oxidative transformation proceeds with activated and unactivated alkenes with moderate to excellent yields. Mechanism experiments suggest addition of the malononitrile radical to form a secondary carbon radical which is intercepted by a chloride source.

View Article and Find Full Text PDF

We describe herein a Cu(OTf) catalyzed oxidative arylation of a tertiary carbon-containing substrate including aryl malononitriles, 3-aryl benzofuran-2-ones, and 3-aryl oxindoles. In some cases, the nitrile groups of the aryl malononitriles undergo further reactions leading to lactones or imines. These reaction conditions are applicable for a range of arenes, including phenols, anilines, anisoles, and heteroarenes.

View Article and Find Full Text PDF

The oxidative activation of alkyl C-H bonds vs arene C-H bonds with Pd(OAc) has been found to be generalizable to a number of nucleophilic substrates allowing the formation of a range of hindered quaternary centers. The substrates share a common mechanistic path wherein Pd(II) initiates an oxidative dimerization. The resultant dimer modifies the palladium catalyst to favor activation of alkyl C-H bonds in contrast to the trends typically observed via a concerted metalation deprotonation mechanism.

View Article and Find Full Text PDF

Detailed computational (DFT) studies of the palladium(II)-catalyzed Claisen rearrangement of 2-allyloxy- and propargyloxyindoles revealed an unexpected divergent mode of reactivity. Subsequent experimental kinetic isotope effects are in accord with the mechanism derived from the computations. The computational results led to the development of Pd(II)-catalyzed [3,3]-sigmatropic rearrangement of 3-aryl substituted 2-propargylindoles.

View Article and Find Full Text PDF

Arene amination is achieved by site-selective C-H zincation followed by copper-catalyzed coupling with O-benzoylhydroxylamines under mild conditions. Key to this success is ortho-zincation mediated by lithium amidodiethylzincate base that is effective for a wide range of arenes, including nonactivated arenes bearing simple functionalities such as fluoride, chloride, ester, amide, ether, nitrile, and trifluoromethyl groups as well as heteroarenes including indole, thiophene, pyridine, and isoquinoline. An analogous C-H azidation is also accomplished using azidoiodinane for direct introduction of a useful azide group onto a broad scope of arenes and heteroarenes.

View Article and Find Full Text PDF

Aminoarenes constitute valuable building blocks in organic synthesis and an essential skeleton ubiquitously found in ligands, agrochemicals, and pharmaceuticals. This Synopsis presents recent amination methods using nitrogen-heteroatom bonds as a powerful and versatile platform to rapidly synthesize diverse aminoarenes, with a focus on aryne amino functionalization and transition-metal-catalyzed arene C-H amination.

View Article and Find Full Text PDF

A rapid and general access to ortho-haloaminoarenes has been developed by aryne insertion into N-chloramine, N-bromoamine, and N-iodoamine bonds via two complementary protocols harnessing fluoride-promoted 1,2-elimination of ortho-trimethylsilyl aryltriflates. Typically, electron-deficient N-chloramines effectively react with aryne intermediates generated at elevated temperature with CsF, while less stable N-haloamines are found more efficient under milder, TBAF-mediated aryne formation at room temperature. Both protocols demonstrate a good level of regioselectivity and functional group tolerance.

View Article and Find Full Text PDF

Direct amination of heteroarenes and arenes has been achieved in a one-pot CH zincation/copper-catalyzed electrophilic amination procedure. This amination method provides an efficient and rapid approach to access a diverse range of heteroaromatic and aromatic amines including those previously inaccessible using CH amination methods. The mild reaction conditions and good functional-group compatibility demonstrate its great potential for the synthesis of important and complex amines.

View Article and Find Full Text PDF

A new approach to access o-haloaminoarenes has been achieved by insertion of arynes into a nitrogen-halide bond (N-X). This transition-metal-free transformation displays a broad substrate scope of arynes, good compatibility with functional groups, and high regioselectivity. Representative transformations of the o-haloaminoarenes are described to highlight their utility for rapid access to diversely functionalized aminoarene derivatives.

View Article and Find Full Text PDF

Azide and alkyne-functionalized N-mustard analogues of S-adenosyl-L-methionine have been synthesized and were demonstrated to undergo efficient methyltransferase-dependent DNA alkylation by M.TaqI and M.HhaI.

View Article and Find Full Text PDF