The basic properties of the duplication process can be defined by two time periods: , the time for a round of chromosome replication, and , the time between the end of a round of replication and cell division. Given the durations of these periods, the pattern of chromosome replication during the cell cycle can be determined for cells growing with any doubling time. In the 55 years since these parameters were identified, there have been numerous investigations into their durations and into the elements that determine their initiations.
View Article and Find Full Text PDFMy effort to use synchronously dividing cultures to examine the Escherichia coli cell cycle involved a 10-year struggle with failure after failure punctuated by a few gratifying successes, especially at the end. In this essay, I recount my personal journey in this obsessive experimental pursuit. That narrative is followed by a description of a simplified version of the "baby machine," a technique that was developed to obtain minimally disturbed, synchronously growing E.
View Article and Find Full Text PDFA culture system for performing cell cycle analyses on cells in undisturbed steady-state populations was designed and tested. In this system, newborn cells are shed continuously from an immobilized, perfused culture rotating about the horizontal axis. As a result of this arrangement, the number of newborn cells released into the effluent medium each generation is identical to the number of cells residing in the immobilized population, indicating that one of the two new daughter cells is shed at each cell division.
View Article and Find Full Text PDFThe cyclins are tightly regulated elements governing eukaryotic cell cycle progression by means of sequential activation-inactivation of cyclin-dependent kinases. In one manifestation of this regulation, the mRNA levels of several cyclin genes oscillate during the cycle in mammalian cells. Such cycle-dependent fluctuations in transcript levels could result from changes not only in rates of transcription, but also in mRNA stability.
View Article and Find Full Text PDFGrowth characteristics of synchronous human MOLT-4, human U-937 and mouse L1210 cultures produced with a new minimally-disturbing technology were compared to each other and to synchronous Escherichia coli B/r. Based on measurements of cell concentrations during synchronous growth, synchrony persisted in similar fashion for all cells. Cell size and DNA distributions in the mammalian cultures also progressed synchronously and reproducibly for multiple cell cycles.
View Article and Find Full Text PDFA method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances.
View Article and Find Full Text PDF