Publications by authors named "Charles Despres"

Salicylic acid (SA) is produced by plants in response to pathogen infection. SA binds the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family of receptors to regulate both positive (NPR1) and negative (NPR3/4) plant immune responses by interacting with the clade II TGACG (TGA) motif-binding transcription factors (TGA2, TGA5, and TGA6). Here, we report that the principal metabolome-level response to SA treatment in Arabidopsis is a reduction in sucrose and other free sugars.

View Article and Find Full Text PDF

Each year, crop yield is lost to weeds competing for resources, insect herbivory and diseases caused by pathogens. To thwart these insults and preserve yield security and a high quality of traits, conventional agriculture makes use of improved cultivars combined with fertilizer and agrochemical applications. However, given that regulatory bodies and consumers are demanding environmentally safer agrochemicals, while at the same time resistance to agrochemicals is mounting, it is crucial to adopt a "holistic" approach to agriculture by not excluding any number of management tools at our disposal.

View Article and Find Full Text PDF

In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition.

View Article and Find Full Text PDF

Salicylic acid (SA) is a mandatory plant metabolite in the deployment of systemic acquired resistance (SAR), a broad-spectrum systemic immune response induced by local inoculation with avirulent pathogens. The NPR1 transcription co-activator is the central node positively regulating SAR. SA was the last of the major hormones to be without a known receptor.

View Article and Find Full Text PDF

Transcriptional reprogramming during induction of salicylic acid (SA)-mediated defenses is regulated primarily by NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1), likely through interactions with TGA bZIP transcription factors. To ascertain the contributions of clade I TGA factors (TGA1 and TGA4) to defense responses, a tga1-1 tga4-1 double mutant was constructed and challenged with Pseudomonas syringae and Hyaloperonospora arabidopsidis. Although the mutant displayed enhanced susceptibility to virulent P.

View Article and Find Full Text PDF

Salicylic acid (SA) is an essential hormone in plant immunity, but its receptor has remained elusive for decades. The transcriptional coregulator NPR1 is central to the activation of SA-dependent defense genes, and we previously found that Cys(521) and Cys(529) of Arabidopsis NPR1's transactivation domain are critical for coactivator function. Here, we demonstrate that NPR1 directly binds SA, but not inactive structural analogs, with an affinity similar to that of other hormone-receptor interactions and consistent with in vivo Arabidopsis SA concentrations.

View Article and Find Full Text PDF

Much of what we, as plant molecular biologists studying gene regulation, know comes from paradigms characterized or developed in mammalian systems. Although plants, animals, and fungi have been diverging for a very long time, a great deal of the machineries and components discovered in yeast and mammals seem to have been maintained in plants. Nevertheless, despite this apparent conservation, evolutionary pressures on the mechanisms of gene regulation are likely to be different between these kingdoms, given their different environmental constraints.

View Article and Find Full Text PDF

TGA2 and NONEXPRESSER OF PR GENES1 (NPR1) are activators of systemic acquired resistance (SAR) and of the SAR marker gene pathogenesis-related-1 (PR-1) in Arabidopsis thaliana. TGA2 is a transcriptional repressor required for basal repression of PR-1, but during SAR, TGA2 recruits NPR1 as part of an enhanceosome. Transactivation by the enhanceosome requires the NPR1 BTB/POZ domain.

View Article and Find Full Text PDF

Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1).

View Article and Find Full Text PDF

Transcriptional reprogramming is critical for plant disease resistance responses. In potato (Solanum tuberosum), the marker gene PATHOGENESIS-RELATED-10a (PR-10a) is transcriptionally activated by pathogens, wounding, or elicitor treatment. Activation of PR-10a requires the recruitment of the activator Why1 to its promoter.

View Article and Find Full Text PDF

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) regulates systemic acquired resistance (SAR) in Arabidopsis thaliana, and current models propose that after treatment with salicylic acid (SA), Cys-82 and Cys-216 of NPR1 are reduced, leading to nuclear import. The interaction of nucleus-localized NPR1 with TGA transcription factors results in the activation of defense genes, including the SAR marker PATHOGENESIS-RELATED-1 (PR-1), and the deployment of SAR. Little is known about how TGA factors or NPR1 regulate transcription or whether a TGA-NPR1 complex forms on DNA.

View Article and Find Full Text PDF

Changes in gene expression during systemic acquired resistance (SAR) require the phenolic signaling molecule salicylic acid (SA) and are modulated by the interaction between the NON EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) protein and members of the TGA family of transcription factors. In the past two years, the activities of NPR1 and of the TGA factors TGA1 and TGA4 have been shown to be modulated by SA-induced oxidoreduction (redox) modifications of key cysteine residues. Reduction of two conserved cysteines in NPR1 leads to its monomerization and nuclear localization, which is required for the activation of PATHOGENESIS-RELATED(PR) genes.

View Article and Find Full Text PDF

Transcriptional reprogramming is critical for plant disease resistance responses; its global control is not well understood. Salicylic acid (SA) can induce plant defense gene expression and a long-lasting disease resistance state called systemic acquired resistance (SAR). Plant-specific "Whirly" DNA binding proteins were previously implicated in defense gene regulation.

View Article and Find Full Text PDF

The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box-containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants.

View Article and Find Full Text PDF

The Arabidopsis NPR1 protein is essential for regulating salicylic acid-dependent gene expression during systemic acquired resistance. NPR1 interacts differentially with members of the TGA class of basic domain/Leu zipper transcription factors and regulates their DNA binding activity. Here, we report that although TGA1 does not interact with NPR1 in yeast two-hybrid assays, treatment with salicylic acid induces the interaction between these proteins in Arabidopsis leaves.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: