Publications by authors named "Charles D Spellman"

Acid mine drainage (AMD) and municipal wastewater (MWW) are commonly co-occurring waste streams in mining regions. Co-treating AMD at existing wastewater facilities represents an innovative solution for simultaneous AMD reclamation and improved MWW treatment. However, unknowns related to biological processes and continuous treatment performance block full-scale use.

View Article and Find Full Text PDF

Ferrate is a promising, "green" (i.e., iron-based) pre-oxidation technology in water treatment, but there has been limited research on its potential benefits in a water reuse (wastewater recycling) paradigm.

View Article and Find Full Text PDF

Ferrate(VI) has the potential to play a key role in future water supplies. Its salts have been suggested as "green" alternatives to current advanced oxidation and disinfection methods in water treatment, especially when combined with ultraviolet light to stimulate generation of highly oxidizing Fe(V) and Fe(IV) species. However, the nature of these intermediates, the mechanisms by which they form, and their roles in downstream oxidation reactions remain unclear.

View Article and Find Full Text PDF

Ferrate is a promising, emerging water treatment technology. However, there has been limited research on the application of ferrate in a water reuse paradigm. Recent literature has shown that ferrate oxidation of target contaminants could be improved by "activation" with the addition of reductants or acid.

View Article and Find Full Text PDF

Municipal wastewater (MWW) and mine drainage (MD) are common co-occurring sources of freshwater pollution in mining regions. The physicochemical interactions that occur after mixing MWW and MD in a waterway may improve downstream water quality of an impaired reach by reducing downstream concentrations of nutrients and metals (i.e.

View Article and Find Full Text PDF

Increases in harmful algal blooms has negatively impacted many surface-sourced drinking water utilities. To control these blooms, many water utilities implement pre-oxidation with ozone, chlorine, or permanganate; however, pre-oxidation of algae has both positive and negative water quality outcomes. This study investigated ferrate (Fe(VI)) as an alternative oxidant by measuring its effect on cell lysing, surface characteristics, and coagulation in waters containing the cyanobacteria Microcystis aeruginosa.

View Article and Find Full Text PDF

Acid mine drainage is a persistent and problematic source of water pollution. Co-treatment with municipal wastewater at existing wastewater treatment plants has several advantages; however, potential impacts on plant physicochemical and biological processes have not been well explored. The primary purpose of this bench-scale study was to examine the impact of co-treatment by combining a mild acid mine drainage at various ratios with municipal wastewater, followed by sludge settling and supernatant comparative analysis using a variety of effluent water quality parameters.

View Article and Find Full Text PDF